Rising temperatures across the U.S. have reduced lake ice, sea ice, glaciers, and seasonal snow cover over the last several decades. Jump to “Arctic Sea Ice and Lake Ice is Melting”
   Search this Site
Culture, Climate Science & Education
Click the Double Arrows () to Explore this Principle
Principle Eight: Climate Change will have Consequences
The Cultural Values are Courage, Compassion, and Endurance
Episode Eight: Wildfire
Episode 8: Wildfire
Transcript with Description of Visuals
Audio |
Visual |
---|---|
Soft instrumental music: |
View from a helicopter flying into a steep, wooded canyon. The air is smoky, the far end of the canyon obscured by haze. |
I have grown up on this land, like my Sx̣epeʔ, and his Sx̣epeʔ before that. My name is Rylee. |
Rylee walking toward and then entering a blue helicopter. |
We're going into a wildfire to see how the climate affects a burning landscape. |
Helicopter taking off. |
With ever-increasing temperatures due to climate change, severe wildfires are becoming the new norm. |
Helicopter flying over forested mountains, columns of smoke rise from the trees. |
Ron Swaney, a fire management officer, has been fighting fire here for decades. He's seen firsthand how fire behavior has changed. |
Back on the ground, Ron Swaney, Rylee, and Rylee’s grandfather stand in front of a red and white fire-fighting airplane. Ron greets them and they shake hands. |
Ron Swaney: Three things that cause fires to spread: fuels, weather, and topography. And the only one that's the variable is the weather. We're getting hotter, we're getting drier, and the potential is only increasing for wildfire, based on just the climatology and the changes that have occurred. So it's been a dramatic change, both in the number of fires that we get and the amount of acres that we burn. |
Ron talks as Rylee and his grandfather listen. |
Rylee: |
Pilot of the plane sits in the cockpit, readying the plane for flight. Another man walks toward the plane and hands the pilot a bottle of water. |
My Sx̣epeʔ tells me how the tribes use fire as a tool to care for the land. |
Rylee’s grandfather taking to Rylee. |
The forests were kept healthy by thousands of years of burning by our ancestors. |
Black and white historical photo of two teepees set among the trees next to a lake. |
Rylee’s grandfather: Respect the fire, use it a good way, it'll help you. So with the huckleberries, the people knew this a long time ago. |
Rylee’s grandfather talking to Rylee. |
Rylee: |
Black and white historical photo of a group of Salish and Pend d’Oreille people on horses, two men in the foreground, dressed finely, look directly into the camera. |
The old ways are still relevant. |
Helicopter taking off and flying toward the mountains. |
What the Sx͏ʷpaam used to do they now call prescribed burns. They are the same thing. |
Rylee, wearing a helicopter flight helmet, looking out from the flying helicopter. The sky is filled with smoke. |
Fighting fires at a time of year when it will help the forest instead of hurting it. That makes dangerous fire less likely. |
View from the helicopter looking down at a line of fire burning through trees near a road. |
It is hard for us to imagine today, because for over 100 years, we have been trying to keep fire off the land. |
A firefighter in the helicopter looking down at the fire. |
The result is that the forests have grown dense, and are now much more prone to fire. |
View from the helicopter looking out at a tree covered mountain, crisscrossed with roads. Columns of smoke rise in multiple places from the mountain. The sky is filled with smoke. A more close-up view of the forest, smoke everywhere. |
We'll go into October, close to November, with very little moisture, elevated temperatures, and still quite a bit of fire potential. |
Ron Swaney talking to Rylee and Rylee’s grandfather. |
Rylee: |
Fire Fighting plane turning on the runway then taking off. |
I think we have a lot to learn by looking at how our ancestors used fire. |
Rylee and his grandfather smiling and laughing, a fire-fighting plane in the background. |
The land needs the help and knowledge that comes from thousands of years of living in this place. |
A high mountain lake, it’s waters a deep blue-green color. Scene transitions to a row of teepees in a grassy meadow. |
(soft instrumental music) |
The following credits in white text over a black background: |
Principle 8
What You Need to Know About Principle 8: Climate change will have consequences for the Earth system and human lives
The impacts of climate change on humans and the environment has become a focus for tribal, state, and federal governments, resource managers, medical professionals, emergency managers, insurance companies, military planners, and just about everybody else concerned about a livable, sustainable future.
Poverty, a lack of resources, and the absence of political will compound existing problems. Many feel that the challenge of the 21st century will be in preparing communities to adapt to climate change while reducing human impacts on the climate system (known as mitigation). Many jobs, if not entire industries, will emerge to address these complex issues. Indeed, our response to climate change presents tremendous opportunities for young people to make good money while making the world a better place to live.
click the tabs to open
Global Impacts
- Mean Global Temperatures are Increasing
The main impact of climate change is predicted to be an increase in global mean temperature over most land surfaces. We have already seen major changes. The sixteen warmest years on record have occurred in the last 17 years. Jump to “Mean Global Temperatures are Increasing”
- Arctic Sea and Lake Ice is Melting
- Sea Level is Rising and Coasts are Eroding
Melting of ice sheets and glaciers, combined with the thermal expansion of seawater as the oceans warm, is causing sea level to rise. Seawater is beginning to move onto low-lying land and cause billions of dollars in damage. Jump to “Sea Level is Rising”
- Changing Precipitation and Temperature are Altering the Distribution and Availability of Water and in Alaska, Permafrost is Thawing
Climate plays an important role in the global distribution of freshwater resources. Changing precipitation patterns and temperature conditions are changing the distribution and availability of freshwater. Winter snowpack and mountain glaciers are declining as a result of global warming. Jump to “Changing precipitation and temperature are altering the distribution and availability of water”
- Extreme Weather Events are Increasing
Incidents of extreme weather are increasing as a result of climate change. Many locations are seeing a substantial increase in the number of heat waves they experience per year and a decrease in episodes of severe cold. Precipitation events are becoming less frequent but more intense in many areas, and droughts are becoming more frequent and severe in areas where average precipitation is projected to decrease. Jump to “Extreme weather events are increasing”
- Oceans are Becoming more Acidic
The chemistry of ocean water is changed by absorption of carbon dioxide from the atmosphere. Increasing carbon dioxide levels in the atmosphere is causing ocean water to become more acidic, threatening the survival of shell-building marine species and the entire food web of which they are a part. Jump to “Oceans are Becoming More Acidic”
- Ecosystems are Changing
Ecosystems on land and in the ocean have been and will continue to be disturbed by climate change. Animals, plants, bacteria, and viruses will migrate to new areas with favorable climate conditions. Infectious diseases and certain species will be able to invade areas that they did not previously inhabit. Jump to “Ecosystems are Changing”
- Climate Change is Altering the Timing of Natural Events
There is now ample evidence that over the last decades, the phenology—the timing of seasonal activities such as timing of flowering or breeding —of many plant and animal species has advanced and that these shifts are related to climate change. Scientists are just now learning how these shifts in timing will impact living systems. Jump to “Climate Change is Altering the Timing of Natural Events”
- Human Health and Mortality Rates will be Affected
Human health and mortality rates will be affected to different degrees in specific regions of the world as a result of climate change. Although cold-related deaths are predicted to decrease, other risks are predicted to rise. The incidence and geographical range of climate-sensitive infectious diseases—such as malaria, dengue fever, and tick-borne diseases—will increase. Drought-reduced crop yields, degraded air and water quality, and increased hazards in coastal and low-lying areas will contribute to unhealthy conditions, particularly for the most vulnerable populations. Jump to “Human Health and Mortality Rates will be Affected”
- Summary of Impacts
Without action, climate scientists have warned that temperatures could rise by nearly 5° C above pre-industrial levels by 2100. World leaders meeting in Paris hope to keep average global surface temperature rises below 2° C – but their pledges to cut emissions could still see up to 3° C according to analyses. While it is very hard to make firm predictions, here are some of the potential impacts. All are for possible temperature rises occurring by 2100. Jump to “Summary of Impacts”
Pacific Northwest Impacts
- Introduction
Introduction
With craggy shorelines, volcanic mountains, and high sage deserts, the Northwest’s complex and varied topography contributes to the region’s rich climatic, geographic, social, and ecologic diversity. Abundant natural resources – timber, fisheries, productive soils, and plentiful water – remain important to the region’s economy. Climate change is already impacting all of these resources in significant ways, and even greater changes are expected in the coming decades.
Snow accumulates in mountains, melting in spring to power both the region’s rivers and economy, creating enough hydropower (40% of national total) to export 2 to 6 million megawatt hours per month. Snowmelt waters crops in the dry interior, helping the region produce tree fruit (number one in the world) and almost $17 billion worth of agricultural commodities, including 55% of potato, 15% of wheat, and 11% of milk production in the United States.,
Seasonal water patterns shape the life cycles of the region’s flora and fauna, including iconic salmon and steelhead, and forested ecosystems, which cover 47% of the landscape. Along more than 4,400 miles of coastline, regional economic centers are juxtaposed with diverse habitats and ecosystems that support thousands of species of fish and wildlife, including commercial fish and shellfish resources valued at $480 million in 2011.
Adding to the influence of climate, human activities have altered natural habitats, threatened species, and extracted so much water that there are already conflicts among multiple users in dry years. More recently, efforts have multiplied to balance environmental restoration and economic growth while evaluating climate risks. As conflicts and tradeoffs increase, the region’s population continues to grow, and the regional consequences of climate change continue to unfold. The need to seek solutions to these conflicts is becoming increasingly urgent.
The Northwest’s economy, infrastructure, natural systems, public health, and vitally important agriculture sector all face important climate change related risks. Those risks – and possible adaptive responses – will vary significantly across the region. Impacts on infrastructure, natural systems, human health, and economic sectors, combined with issues of social and ecological vulnerability, will play out quite differently in largely natural areas, like the Cascade Range or Crater Lake National Park, than in urban areas like Seattle and Portland, or among the region’s many Native American tribes, like the Umatilla or the Quinault. As climatic conditions diverge from those that determined patterns of development and resource use in the last century, and as demographic, economic, and technological changes also stress local systems, efforts to cope with climate change would benefit from an evolving, iterative risk management approach.
Source: http://nca2014.globalchange.gov/report/regions/northwest - Observed and Projected Climate Change
Observed Climate Change
The Pacific Northwest is projected to warm rapidly during the 21st century, relative to 20th century average climate because of greenhouse gases emitted from human activities. The actual amount of warming that occurs in the Pacific Northwest after about 2050 depends on the amount of greenhouse gases emitted globally in coming decades.
Changes in annual and seasonal precipitation will continue to be primarily driven by year-to-year variations rather than long-term trends, but heavy rainfall events are projected to become more severe.
Washington’s coast will be affected by sea level rise, warmer ocean temperatures, and changing ocean chemistry.
Temperatures increased across the region from 1895 to 2011, with a regionally averaged warming of about 1.3°F. While precipitation has generally increased, trends are small as compared to natural variability. Both increasing and decreasing trends are observed among various locations, seasons, and time periods of analysis. Studies of observed changes in extreme precipitation use different time periods and definitions of “extreme”, but none find statistically significant changes in the Northwest. These and other climate trends include contributions from both human influences (chiefly heat-trapping gas emissions) and natural climate variability, and consequently are not projected to be uniform or smooth across the country or over time. They are also consistent with expected changes due to human activities.Projected Climate Change
An increase in average annual temperature of 3.3°F to 9.7°F is projected by 2070 to 2099 (compared to the period 1970 to 1999), depending largely on total global emissions of heat-trapping gases. The increases are projected to be largest in summer. Change in annual average precipitation in the Northwest is projected to be within a range of an 11% decrease to a 12% increase for 2030 to 2059 and a 10% decrease to an 18% increase for 2070 to 2099. For every season, some models project decreases and some project increases yet one aspect of seasonal changes in precipitation is largely consistent across climate models: summer precipitation is projected to decrease by as much as 30% by the end of the century. Northwest summers are already dry and although a 10% reduction (the average projected change for summer) is a small amount of precipitation, unusually dry summers have many noticeable consequences, including low streamflow west of the Cascades and greater extent of wildfires throughout the region.
In addition to these predictions, new areas of concern, such as ocean acidification, have arisen.
Source: http://nca2014.globalchange.gov/report/regions/northwest - Water-related Challenges
Water-related Challenges
Changes in the timing of streamflow related to changing snowmelt have been observed and will continue, reducing the supply of water for many competing demands and causing far-reaching ecological and socioeconomic consequences.
Observed regional warming has been linked to changes in the timing and amount of water that is available. Since around 1950, area-averaged snowpack on April 1 in the Cascade Mountains decreased about 20%, spring snowmelt occurred 0 to 30 days earlier, late winter/early spring streamflow increases ranged from 0% to greater than 20%, and summer flow decreased 0% to 15%.
Figure 21.1: Observed Shifts in Streamflow Timing. Reduced June flows in many Northwest snow-fed rivers is a signature of warming in basins that have a significant snowmelt contribution. The fraction of annual flow occurring in June increased slightly in rain-dominated coastal basins and decreased in mixed rain-snow basins and snowmelt-dominated basins over the period 1948 to 2008. The high flow period is in June for most Northwest river basins; decreases in summer flows can make it more difficult to meet a variety of competing human and natural demands for water. (Figure source: adapted from Fritze et al. 2011).
Water-related responses to climate change will depend upon the dominant form of precipitation (snow or rain) in a particular watershed, as well as other local characteristics including elevation, aspect, geology, vegetation, and land use. The largest responses are expected to occur in basins with significant snow accumulation, where warming increases winter flows and advances the timing of spring melt. By 2050, snowmelt is projected to shift three to four weeks earlier than the 20th century average, and summer flows are projected to be substantially lower. In some North Cascade rivers, a significant fraction (10% to 30%) of late summer flow originates as glacier melt; the consequences of eventual glacial disappearance are not well quantified.
Figure 21.2: Future Shift in Timing of Stream Flows Reduced Summer Flows (Left) Projected increased winter flows and decreased summer flows in many Northwest rivers will cause widespread impacts. Mixed rain-snow watersheds, such as the Yakima River basin, an important agricultural area in eastern Washington, will see increased winter flows, earlier spring peak flows, and decreased summer flows in a warming climate. Changes in average monthly streamflow by the 2020s, 2040s, and 2080s (as compared to the period 1916 to 2006) indicate that the Yakima River basin could change from a snow-dominant to a rain-dominant basin by the 2080s. (Right) Natural surface water availability during the already dry late summer period is projected to decrease across most of the Northwest. The map shows projected changes in local runoff (shading) and streamflow (colored circles) for the 2040s (compared to the period 1915 to 2006) under the same scenario as the left figure (A1B). Streamflow reductions such as these would stress freshwater fish species (for instance, endangered salmon and bull trout) and necessitate increasing tradeoffs among conflicting uses of summer water. Watersheds with significant groundwater contributions to summer streamflow may be less responsive to climate change than indicated here.
Changes in river-related flood risk depends on many factors, but warming is projected to increase flood risk the most in mixed basins (those with both winter rainfall and late spring snowmelt-related runoff peaks) and remain largely unchanged in snow-dominant basins. Regional climate models project increases of 0% to 20% in extreme daily precipitation, depending on location and definition of “extreme” (for example, annual wettest day). Averaged over the region, the number of days with more than one inch of precipitation is projected to increase 13% in 2041 to 2070 compared with 1971 to 2000, though these projections are not consistent across models. This increase in heavy downpours could increase flood risk in mixed rain-snow and rain-dominant basins, and could also increase stormwater management challenges in urban areas.
Consequences and Likelihoods of Changes
Reservoir systems have multiple objectives, including irrigation, municipal and industrial use, hydropower production, flood control, and preservation of habitat for aquatic species. Modeling studies indicate, with near 100% likelihood and for all emissions scenarios, that reductions in summer flow will occur by 2050. These reduced flows will require more tradeoffs among objectives of the whole system of reservoirs, especially with the added challenges of summer increases in electric power demand for cooling and additional water consumption by crops and forests. For example, reductions in hydropower production of as much as 20% by the 2080s could be required to preserve in-stream flow targets for fish in the Columbia River basin. Springtime irrigation diversions increased between 1970 and 2007 in the Snake River basin, as earlier snowmelt led to reduced spring soil moisture. In the absence of human adaptation, annual hydropower production is much more likely to decrease than to increase in the Columbia River basin; economic impacts of hydropower changes could be hundreds of millions of dollars per year.
Region-wide summer temperature increases and, in certain basins, increased river flooding and winter flows and decreased summer flows, will threaten many freshwater species, particularly salmon, steelhead, and trout. Rising temperatures will increase disease and/or mortality in several iconic salmon species, especially for spring/summer Chinook and sockeye in the interior Columbia and Snake River basins. Some Northwest streams and lakes have already warmed over the past three decades, contributing to changes such as earlier Columbia River sockeye salmon migration and earlier blooms of algae in Lake Washington. Relative to the rest of the United States, Northwest streams dominated by snowmelt runoff appear to be less sensitive, in the short term, to warming due to the temperature buffering provided by snowmelt and groundwater contributions to those streams. However, as snowpack declines, the future sensitivity to warming is likely to increase in these areas. By the 2080s, suitable habitat for the four trout species of the interior western U.S. is projected to decline 47% on average, compared to the period 1978-1997. As species respond to climate change in diverse ways, there is potential for ecological mismatches to occur – such as in the timing of the emergence of predators and their prey.
http://nca2014.globalchange.gov/report/regions/northwest
. - Coastal Vulnerabilities
Coastal Vulnerabilities
In the coastal zone, the effects of sea level rise, erosion, inundation, threats to infrastructure and habitat, and increasing ocean acidity collectively pose a major threat to the region.
With diverse landforms (such as beaches, rocky shorelines, bluffs, and estuaries), coastal and marine ecosystems, and human uses (such as rural communities, dense urban areas, international ports, and transportation), the Pacific Northwest coast will experience a wide range of climate impacts.
Global sea levels have risen about 8 inches since 1880 and are projected to rise another 1 to 4 feet by 2100. Many local and regional factors can modify the global trend as can other geophysical factors.
Figure 21.3: Projected Relative Sea Level Rise for the Latitude of Newport, Oregon
Projected relative sea level rise for the latitude of Newport, Oregon (relative to the year 2000). The blue area shows the range of relative sea level rise, and the black line shows the projection, which incorporates global and regional effects of warming oceans, melting land ice, and vertical land movements. Given the difficulty of assigning likelihood to any one possible trajectory of sea level rise at this time, a reasonable risk assessment would consider multiple scenarios within the full range of possible outcomes shown, in conjunction with long- and short-term compounding effects, such as El Niño-related variability and storm surge. (Data from NRC 2012).
Much of the Northwest coastline is rising due to a geophysical force known as “tectonic uplift,” which raises the land surface. Because of this, apparent sea level rise is less than the currently observed global average. However, a major earthquake along the Cascadia subduction zone, expected within the next few hundred years, would immediately reverse centuries of uplift and, based on historical evidence, increase relative sea level 40 inches or more. On the other hand, some Puget Sound locations are currently experiencing subsidence (where land is sinking or settling) and could see the reverse effect, witnessing immediate uplift during a major earthquake and lowered relative sea levels.
Taking into account many of these factors, a recent evaluation calculated projected sea level rise and ranges for the years 2030, 2050, and 2100 (relative to 2000) based on latitude for Washington, Oregon, and California (see Figure 21.3). In addition to long-term climate-driven changes in sea level projected for the Northwest, shorter-term El Niño conditions can increase regional sea level by about 4 to 12 inches for periods of many months.
Northwest coastal waters, some of the most productive on the West Coast, have highly variable physical and ecological conditions as a result of seasonal and year-to-year changes in upwelling of deeper marine water that make longer-term changes difficult to detect. Coastal sea surface temperatures have increased, and summertime fog has declined between 1900 and the early 2000s, both of which could be consequences of weaker upwelling winds. Projected changes include increasing but highly variable acidity. increasing surface water temperature (2.2°F from the period 1970 to 1999 to the period 2030 to 2059), and possibly changing storminess., Climate models show inconsistent projections for the future of Northwest coastal upwelling.
Consequences and the Likelihood of Changes
In Washington and Oregon, more than 140,000 acres of coastal lands lie within 3.3 feet in elevation of high tide. As sea levels continue to rise, these areas will be inundated more frequently. Many coastal wetlands, tidal flats, and beaches will decline in quality and extent as a result of sea level rise, particularly where habitats cannot shift inland because of topographical limitations or physical barriers resulting from human development. Species such as shorebirds and forage fish (small fish eaten by larger fish, birds, or mammals) would be harmed, and coastal infrastructure and communities would be at greater risk from coastal storms.
Ocean acidification threatens culturally and commercially significant marine species directly affected by changes in ocean chemistry (such as oysters) and those affected by changes in the marine food web (such as Pacific salmon). Northwest coastal waters are among the most acidified worldwide, especially in spring and summer with coastal upwelling combined with local factors in estuaries.
Increasing coastal water temperatures and changing ecological conditions may alter the ranges, types, and abundances of marine species. Recent warm periods in the coastal ocean, for example, saw the arrival of subtropical and offshore marine species from zooplankton to top predators such as striped marlin, tuna, and yellowtail more common to the Baja area. Warmer water in regional estuaries (such as Puget Sound) may contribute to a higher incidence of harmful blooms of algae linked to paralytic shellfish poisoning and may result in adverse economic impacts from beach closures affecting recreational harvesting of shellfish such as razor clams. Toxicity of some harmful algae appears to be increased by acidification.
Many human uses of the coast – for living, working, and recreating – will also be negatively affected by the physical and ecological consequences of climate change. Erosion, inundation, and flooding will threaten public and private property along the coast; infrastructure, including wastewater treatment plants; stormwater outfalls; ferry terminals; and coastal road and rail transportation, especially in Puget Sound. Municipalities from Seattle and Olympia, Washington, to Neskowin, Oregon, have mapped risks from the combined effects of sea level rise and other factors.
Source: http://nca2014.globalchange.gov/report/regions/northwest - Impacts on Forests
Impacts on Forests
The combined impacts of increasing wildfire, insect outbreaks, and tree diseases are already causing widespread tree die-off and are virtually certain to cause additional forest mortality by the 2040s and long-term transformation of forest landscapes. Under higher emissions scenarios, extensive conversion of subalpine forests to other forest types is projected by the 2080s.
Evergreen coniferous forests are a prominent feature of Pacific Northwest landscapes, particularly in mountainous areas. Forests support diverse fish and wildlife species, promote clean air and water, stabilize soils, and store carbon. They support local economies and traditional tribal uses and provide recreational opportunities.
Climate change will increase wildfire risk and insect and tree disease outbreaks, and force longer-term shifts in forest types and species. Many impacts will be driven by water deficits, which increase tree stress and mortality, tree vulnerability to insects, and fuel flammability. The cumulative effects of disturbance – and possibly interactions between insects and fires – will cause the greatest changes in Pacific Northwest forests.
Although wildfires are a natural part of most Northwest forest ecosystems, warmer and drier conditions have helped increase the number and extent of wildfires in western U.S. forests since the 1970s. This trend is expected to continue under future climate conditions. By the 2080s, the median annual area burned in the Northwest would quadruple relative to the 1916 to 2007 period to 2 million acres. Averaged over the region, this would increase the probability that 2.2 million acres would burn in a year from 5% to nearly 50%. Within the region, this probability will vary substantially with sensitivity of fuels to climatic conditions and local variability in fuel type and amount, which are in turn a product of forest type, effectiveness of fire suppression, and land use. For example, in the Western Cascades, the year-to-year variability in area burned is difficult to attribute to climate conditions, while fire in the eastern Cascades and other specific vegetation zones is responsive to climate. How individual fires behave in the future and what impacts they have will depend on factors we cannot yet project, such as extreme daily weather and forest fuel conditions.
Higher temperatures and drought stress are contributing to outbreaks of mountain pine beetles that are increasing pine mortality in drier Northwest forests. This trend is projected to continue with ongoing warming. Between now and the end of this century, the elevation of suitable beetle habitat is projected to increase as temperature increases, exposing higher-elevation forests to the pine beetle, but ultimately limiting available area as temperatures exceed the beetles’ optimal temperatures. As a result, the proportion of Northwest pine forests where mountain pine beetles are most likely to survive is projected to first increase (27% higher in 2001 to 2030 compared to 1961 to 1990) and then decrease (about 49% to 58% lower by 2071 to 2100). For many tree species, the most climatically suited areas will shift from their current locations, increasing vulnerability to insects, disease, and fire in areas that become unsuitable. Eighty-five percent of the current range of three species that are host to pine beetles is projected to be climatically unsuitable for one or more of those species by the 2060s, while 21 to 38 currently existing plant species may no longer find climatically appropriate habitat in the Northwest by late this century.
Consequences and Likelihoods of Changes
The likelihood of increased disturbance (fire, insects, diseases, and other sources of mortality) and altered forest distribution are very high in areas dominated by natural vegetation, and the resultant changes in habitat would affect native species and ecosystems. Subalpine forests and alpine ecosystems are especially at risk and may undergo almost complete conversion to other vegetation types by the 2080s. While increased area burned can be statistically estimated from climate projections, changes in the risk of very large, high-intensity, stand-replacing fires cannot yet be predicted, but such events could have enormous impacts for forest-dependent species. Increased wildfire could exacerbate respiratory and cardiovascular illnesses in nearby populations due to smoke and particulate pollution.
These projected forest changes will have moderate economic impacts for the region as a whole, but could significantly affect local timber revenues and bioenergy markets.
Source: http://nca2014.globalchange.gov/report/regions/northwest - Adapting Agriculture
Adapting Agriculture
While the agriculture sector’s technical ability to adapt to changing conditions can offset some adverse impacts of a changing climate, there remain critical concerns for agriculture with respect to costs of adaptation, development of more climate resilient technologies and management, and availability and timing of water.
Agriculture provides the economic and cultural foundation for Pacific Northwest rural populations and contributes substantively to the overall economy. Agricultural commodities and food production systems contributed 3% and 11% of the region’s gross domestic product, respectively, in 2009. Although the overall consequences of climate change will probably be lower in the Northwest than in certain other regions, sustainability of some Northwest agricultural sectors is threatened by soil erosion, and water supply uncertainty, both of which could be exacerbated by climate change.
Northwest agriculture’s sensitivity to climate change stems from its dependence on irrigation water, a specific range of temperatures, precipitation, and growing seasons, and the sensitivity of crops to temperature extremes. Projected warming will reduce the availability of irrigation water in snowmelt-fed basins and increase the probability of heat stress to field crops and tree fruit. Some crops will benefit from a longer growing season and/or higher atmospheric carbon dioxide, at least for a few decades. Longer-term consequences are less certain. Changes in plant diseases, pests, and weeds present additional potential risks. Higher average temperatures generally can exacerbate pest pressure through expanded geographic ranges, earlier emergence or arrival, and increased numbers of pest generations. Specifics differ among pathogen and pest species and depend upon multiple interactions, preventing region-wide generalizations.
Consequences of Changes
Because much of the Northwest has low annual precipitation, many crops require irrigation. Reduction in summer flows in snow-fed rivers, coupled with warming that could increase agricultural and other demands, potentially produces irrigation water shortages. The risk of a water-short year – when Yakima basin junior water rights holders are allowed only 75% of their water right amount – is projected to increase from 14% in the late 20th century to 32% by 2020 and 77% by 2080.
Assuming adequate nutrients and excluding effects of pests, weeds, and diseases, projected increases in average temperature and hot weather episodes and decreases in summer soil moisture would reduce yields of spring and winter wheat in rain-fed production zones of Washington State by the end of this century by as much as 25% relative to 1975 to 2005. However, carbon dioxide fertilization should offset these effects, producing net yield increases as great as 33% by 2080. Similarly, for irrigated potatoes in Washington State, carbon dioxide fertilization is projected to mostly offset direct climate change related yield losses, although yields are still projected to decline by 2% to 3%. Higher temperatures could also reduce potato tuber quality.
Irrigated apple production is projected to increase in Washington State by 6% in the 2020s, 9% in the 2040s, and 16% in the 2080s (relative to 1975 to 2005) when offsetting effects of carbon dioxide fertilization are included. However, because tree fruit requires chilling to ensure uniform flowering and fruit set and wine grape varieties have specific chilling requirements for maturation, warming could adversely affect currently grown varieties of these commodities. Most published projections of climate change impacts on Northwest agriculture are limited to Washington State and have focused on major commodities, although more than 300 crops are grown in the region. More studies are needed to identify the implications of climate change for additional cropping systems and locations within the region.
Source: http://nca2014.globalchange.gov/report/regions/northwest
……….
Principle 8a
Mean Global Temperatures are Increasing
The main impact of climate change is predicted to be an increase in global mean temperature over most land surfaces. We have already seen major changes. The table at left below lists the sixteen warmest years from 1880 to 2015. Note that all have occurred in the last 17 years. The animated chart at right below shows a rainbow-colored record of global temperatures spinning outward from the late 19th century to the present as the Earth heats up. Read more…
The New Normal
NOAA publishes climatological normals every decade based on 30-year average temperatures; the most recent normals are based on the average temperatures from 1981-2010. Expanding on this dataset, Climate Central calculated a 30-year average ending each year from 1980 to 2015. For example, the normal temperature for 1980 in this analysis was based on the average temperature from 1951-1980, and the 2015 normal is the average from 1986-2015.
Of the 135 locations analyzed, 97 percent of them had a higher 30-year average temperature in 2015 versus 1980, and many have seen an additional surge in their normals since the last NOAA analysis in 1981-2010. The shift in long term averages has already become apparent in the longer growing season in most of the country, with temperatures starting to remain consistently above freezing earlier in the year, and staying above freezing until later in the year. Some plant and animal species are starting to migrate northward or upward in elevation as a result, meaning a variety of pests and weeds are now found in places previously too cold for them to live.
While the warming of the normals can look subtle, it also means a substantial increase in the incidents of extreme heat and a decrease in the frequency of extreme cold. Winters have been warming more rapidly than summers, and while less extreme cold sounds appealing, the future effects of blistering summer heat are expected to outweigh the benefits of milder winters. More extreme heat will increase the threat of heat-related illness such as heat stroke. In addition, this expansion of very hot days will stress the nation’s aging electric grid, driving up cooling costs as air conditioners will likely be used more frequently.
Source: http://www.climatecentral.org/gallery/graphics/the-new-normal-earth-is-getting-hotter
What is Projected for the Pacific Northwest?
Heating Up
The Pacific Northwest is projected to warm rapidly during the 21st century, relative to 20th century average climate, as a result of greenhouse gases emitted from human activities. The actual amount of warming that occurs after about 2050 depends on the amount of greenhouse gases emitted globally in coming decades. Here's what to expect:
What About the Rest of the Country?
Think It’s Hot Now? Just Wait
By HEIDI CULLEN AUG. 20, 2016
Source: http://www.nytimes.com/interactive/2016/08/20/sunday-review/climate-change-hot-future.html?_r=0
Heat waves have become more frequent, more intense and longer lasting. A study in the journal Nature Climate Change last year found that three of every four daily heat extremes can be tied to global warming. The maps below provide a glimpse of our future if nothing is done to slow climate change. By the end of the century, the number of 100-degree days will skyrocket, making working or playing outdoors unbearable, and sometimes deadly. The effects on our health, air quality, food and water supplies will get only worse if we don’t drastically cut greenhouse gas emissions right away.
Click on the maps to enlarge them.
Mean Global Temperatures are Increasing
The main impact of climate change is predicted to be an increase in global mean temperature over most land surfaces. We have already seen major changes. The table at left below lists the sixteen warmest years from 1880 to 2015. Note that all have occurred in the last 17 years. The animated chart at right below shows a rainbow-colored record of global temperatures spinning outward from the late 19th century to the present as the Earth heats up.
Climate models are fairly consistent in projecting the continuation of this trend through the 21st century. According to the Intergovernmental Panel on Climate Change (IPCC), temperatures are likely to increase by 2°F to 11.5°F, with a best estimate of 3.2°F to 7.2°F, by 2100, relative to 1980–1990 temperatures.
As a consequence of the increases we have already seen, glaciers have shrunk, ice on rivers and lakes is breaking up earlier, plant and animal ranges have shifted and trees are flowering sooner.
Effects that scientists had predicted in the past would result from global climate change are now occurring: loss of sea ice, accelerated sea level rise and longer, more intense heat waves. In the future we will see more droughts and heat waves, hurricanes will become stronger, sea level will rise, the Arctic will become ice free.
"Taken as a whole," the IPCC states, "the range of published evidence indicates that the net damage costs of climate change are likely to be significant and to increase over time."
What are our Possible Temperature Futures?
The Consequences: What We Can Expect
-
Increase of Less than 2 °C
Arctic sea icecap disappears, leaving polar bears homeless and changing the Earth's energy balance dramatically as reflective ice is replaced during summer months by darker sea surface. Now expected by 2030 or even earlier.
Tropical coral reefs suffer severe and repeated bleaching episodes due to hotter ocean waters, killing off most coral and delivering a hammer blow to marine biodiversity.
Droughts spread through the sub-tropics, accompanied by heatwaves and intense wildfires. Worst-hit are the Mediterranean, the south-west United States, southern Africa and Australia. -
2 °C to 3 °C
Summer heatwaves such as that in Europe in 2003, which killed 30,000 people, become annual events. Extreme heat sees temperatures reaching the low 40s Celsius in southern England.
Amazon rainforest crosses a "tipping point" where extreme heat and lower rainfall makes the forest unviable - much of it burns and is replaced by desert and savannah.
Dissolved CO2 turns the oceans increasingly acidic, destroying remaining coral reefs and wiping out many species of plankton which are the basis of the marine food chain. Several metres of sea level rise is now inevitable as the Greenland ice sheet disappears. -
3 °C to 4 °C
Glacier and snow-melt in the world's mountain chains depletes freshwater flows to downstream cities and agricultural land. Most affected are California, Peru, Pakistan and China. Global food production is under threat as key breadbaskets in Europe, Asia and the United States suffer drought, and heatwaves outstrip the tolerance of crops.
The Gulf Stream current declines significantly. Cooling in Europe is unlikely due to global warming, but oceanic changes alter weather patterns and lead to higher than average sea level rise in the eastern US and UK. -
4 °C to 5 °C
Another tipping point sees massive amounts of methane - a potent greenhouse gas - released by melting Siberian permafrost, further boosting global warming. Much human habitation in southern Europe, north Africa, the Middle East and other sub-tropical areas is rendered unviable due to excessive heat and drought. The focus of civilisation moves towards the poles, where temperatures remain cool enough for crops, and rainfall - albeit with severe floods - persists. All sea ice is gone from both poles; mountain glaciers are gone from the Andes, Alps and Rockies.
-
5 °C to 6 °C
Global average temperatures are now hotter than for 50m years. The Arctic region sees temperatures rise much higher than average - up to 20C - meaning the entire Arctic is now ice-free all year round. Most of the topics, sub-tropics and even lower mid-latitudes are too hot to be inhabitable. Sea level rise is now sufficiently rapid that coastal cities across the world are largely abandoned.
-
6 °C and Above
Danger of "runaway warming", perhaps spurred by release of oceanic methane hydrates. Could the surface of the Earth become like Venus, entirely uninhabitable? Most sea life is dead. Human refuges now confined entirely to highland areas and the polar regions. Human population is drastically reduced. Perhaps 90% of species become extinct, rivalling the worst mass extinctions in the Earth's 4.5 billion-year history.
Source: http://www.theguardian.com/environment/2009/apr/14/climate-change-environment-temperature
Heating Up: A Dangerous Spiral
This graphic, drawn up by Ed Hawkins, a climate scientist at the University of Reading in the United Kingdom, features a record of global temperatures spinning outward from the late 19th century to the present as the Earth heats up. The graphic displays monthly global temperature data, specifically how each month compares to the average for the same period from 1850-1900. At first, the years vacillate inward and outward, showing that a clear warming signal had yet to emerge from the natural fluctuations that happen from year to year. But clear warming trends are present in the early and late 20th century.
Can you determine about what year temperatures really started to rise?
So, the Earth's average temperature has increased about 1 degree Fahrenheit during the 20th century. What's the big deal?
One degree may sound like a small amount, but it's an unusual event in our planet's recent history. Small changes in temperature correspond to enormous changes in the environment. For example, at the end of the last ice age, when the Northeast United States was covered by more than 3,000 feet of ice, average temperatures were only 5 to 9 degrees cooler than today.
Now look at the spiral below, which shows simulated global temperature change from 1850 up to 2100 relative to the 1850 - 1900 average (how old will you be in the year 2100?). The temperature data are from Community Climate System (CCSM4) global climate model maintained by the National Center for Atmospheric Research. The simulation is for the IPCC Representative Concentration Pathway 8.5 (RCP8.5) emission scenario. RCP8.5 is the most aggressive scenario in which green house gases continue to rise unchecked through the end of the century, leading to an equivalent of about 1370 ppm CO2, which is roughly four times the concentration at present.
The Sixteen Hottest Years on Record
The chart above shows the global combined land and ocean temperature rank and how much the average temperature for that year departed from the average temperature for the period from 1880 to 2015. Note that of the 16 hottest years on record for that period have occurred in the last 17 years. The prediction of NASA and international climate scientists is for the trend to continue and even accelerate. For example, eighty years from now, the mean global temperature is expected to be 7 to 11 °F warmer than it is today.
Principle 8b
Arctic Sea and Lake Ice is Melting
Melting Ice
Rising temperatures across the U.S. have reduced lake ice, sea ice, glaciers, and seasonal snow cover over the last few decades. Mount Rainier’s glaciers are an example. The mountain's glaciers are the largest single-mountain glacier system in the contiguous 48 states. They represent 25% of the total ice area in the contiguous 48 states and contain as much ice (by volume) as all the other Cascade volcanoes combined. However, these glaciers shrank 22% by area and 25% by volume between 1913 and 1994 due to global warming. In the Great Lakes, total winter ice coverage has decreased by 63% since the early 1970s. This includes the entire period since satellite data became available. When the record is extended back to 1963 using pre-satellite data, the overall trend is less negative because the Great Lakes region experienced several extremely cold winters in the 1970s. Read more…
Source: National Climate Assessment
Melting Ice
Sea ice in the Arctic has also decreased dramatically since the late 1970s, particularly in summer and autumn. Since the satellite record began in 1978, minimum Arctic sea ice extent (which occurs in early to mid-September) has decreased by more than 40%. This decline is unprecedented in the historical record, and the reduction of ice volume and thickness is even greater. Ice thickness decreased by more than 50% from 1958-1976 to 2003-2008, and the percentage of the March ice cover made up of thicker ice (ice that has survived a summer melt season) decreased from 75% in the mid-1980s to 45% in 2011. Recent analyses indicate a decrease of 36% in autumn sea ice volume over the past decade. The 2012 sea ice minimum broke the preceding record (set in 2007) by more than 200,000 square miles.
Ice loss increases Arctic warming by replacing white, reflective ice with dark water that absorbs more energy from the sun. More open water can also increase snowfall over northern land areas and increase the north-south meanders of the jet stream, consistent with the occurrence of unusually cold and snowy winters at mid-latitudes in several recent years.
The loss of sea ice has been greater in summer than in winter. The Bering Sea, for example, has sea ice only in the winter-spring portion of the year, and shows no trend in surface area covered by ice over the past 30 years. However, seasonal ice in the Bering Sea and elsewhere in the Arctic is thin and susceptible to rapid melt during the following summer.
The seasonal pattern of observed loss of Arctic sea ice is generally consistent with simulations by global climate models, in which the extent of sea ice decreases more rapidly in summer than in winter. However, the models tend to underestimate the amount of decrease since 2007. Projections by these models indicate that the Arctic Ocean is expected to become essentially ice-free in summer before mid-century under scenarios that assume continued growth in global emissions, although sea ice would still form in winter. Models that best match historical trends project a nearly sea ice-free Arctic in summer by the 2030s, and extrapolation of the present observed trend suggests an even earlier ice-free Arctic in summer. However, even during a long-term decrease, occasional temporary increases in Arctic summer sea ice can be expected over timescales of a decade or so because of natural variability. The projected reduction of winter sea ice is only about 10% by 2030, indicating that the Arctic will shift to a more seasonal sea ice pattern. While this ice will be thinner, it will cover much of the same area now covered by sea ice in winter.
Source: National Climate Assessment
The Arctic is a Seriously Weird Place Right Now
- Published: November 21st, 2016
- Source: http://www.climatecentral.org/news/arctic-sea-ice-record-low-20903
By Brian Kahn
The sun set on the North Pole more than a month ago, not to rise again until spring. Usually that serves as a cue for sea ice to spread its frozen tentacles across the Arctic Ocean. But in the depths of the polar night, a strange thing started to happen in mid-October. Sea ice growth slowed to a crawl and even started shrinking for a bit.
Intense warmth in both the air and oceans is driving the mini-meltdown at a time when Arctic sea ice should be rapidly growing. This follows last winter, when temperatures saw a huge December spike.
Sea ice extent using JAXA satellite measurements. Credit: Zack Labe
Even in an age where climate change is making outliers — lowest maximum sea ice extent set two years in a row, the hottest year on record set three years in a row, global coral bleaching entering a third year — the norm, what’s happening in the Arctic right now stands out for just how outlandish it is.
“I’ve never seen anything like it this last year and half,” Mark Serreze, director of the National Snow and Ice Data Center, said.
The latest twist in the Arctic sea ice saga began in mid-October. Temperatures stayed stuck in their September range, pausing sea ice growth. By the end of the month, the Arctic was missing a chunk of ice the size of the eastern U.S.
RELATED | Warm Temps Slow Arctic Sea Ice Growth to a Crawl |
The oddness continued into November. A large area of the Arctic saw temperatures as much as 36°F above normal, further slowing Arctic sea ice growth and even turning it around for a few days. In other words, it was so warm in the Arctic that despite the lack of sunlight, sea ice actually disappeared.
“ The ridiculously warm temperatures in the Arctic during October and November this year are off the charts over our 68 years of measurements,” Jennifer Francis, a climate scientist at Rutgers University who studies the Arctic, said.
Compounding the warm air is warm water. Sea surface temperatures on the edge of the ice are also running well above normal in many places, further inhibiting sea ice growth.
As a footnote, Antarctic sea ice is also record low, making for a really dire global sea ice graph. The two regions’ current conundrums aren’t connected, and researchers are still trying to untangle what’s happening there. But in the Arctic, a number of factors — both driven by climate change and weather patterns — are to blame for this year’s bizarre sea ice situation.
Global sea ice extent is also at a record low. Credit: Wipneus
First, Arctic sea ice itself has some issues. Old ice has all but disappeared since record keeping began in the 1980s, and the majority of the ice pack is now young ice that tends to be more brittle and prone to breakup when extreme warmth strikes.
Some of that warmth came courtesy of the tropics where convection patterns created a series of large troughs and ridges in the atmosphere. The pattern that set up in mid-October put the eastern edge of one of these troughs over northeast Asia, according to Paul Roundy, an atmospheric scientist at the University of Albany.
Before
Drag split-screen slider or click on before/after link.
After
A comparison of the extension of older sea ice in the Arctic in September 1984 and September 2016.
Credit: NASA Earth Observatory
“The result has been a strong surface low that has funneled warm air at the surface across the Bering Strait,” he said. “A similar low set up in the wave train over the North Atlantic, providing another pathway for warmth into the Arctic.”
The ocean heat has roots in this summer, when dark open water absorbed the sun’s incoming energy (compared to white sea ice, which reflects it back into space). Francis said this “not only slowed the freezing process, but also warmed and moistened the air. That extra moisture is very important because water vapor is a greenhouse gas and it also tends to create more clouds — both of these effects help trap heat near the surface.” It’s what Serreze said was a “double whammy” of warming causing the current meltdown.
This all follows what was the second-lowest sea ice extent ever recorded in September and what has been a persistent dwindling of Arctic sea ice for decades on end as climate change cranks up the heat.
The Arctic is warming twice as fast as the rest of the planet and it’s possible that the region could see ice-free summers as early as the 2030s. If carbon pollution continues at its current pace, it would likely make ice-free summers the norm by mid-century.
Going forward, Serreze said research should focus as on how an already changing Arctic system responds to these types of shocks.
“A valuable way of viewing Arctic system now is (looking at) how it responds to these extremes. Has their impact changed now that Arctic has changed?” he said.
Arctic Oceans, Sea Ice, and Coasts
The impacts of reduced sea ice include severe and coastal erosion, isolation for rural villages and reduced habitat for wildlife
Source: https://toolkit.climate.gov/topics/arctic/arctic-oceans-sea-ice-and-coasts
The Arctic Ocean is blanketed by seasonal sea ice that expands during the frigid Arctic winter, reaching a maximum average extent each March. Sea ice retreats during the Northern Hemisphere's summer, reaching its minimum extent for the year every September. Arctic ice cover plays an important role in maintaining Earth’s temperature—the shiny white ice reflects light and the net heat that the ocean would otherwise absorb, keeping the Northern Hemisphere cool.
Arctic sea ice extent in September 2012 was the lowest in the satellite record (since 1979). The magenta line indicates the September average ice extent from 1981 to 2010.
Arctic sea ice is declining at an increasing rate in all months of the year, with a stronger decline in summer months. Researchers who study climate and sea ice expect that, at some point, the Arctic Ocean will lose virtually all of its late summer ice cover. A robust range of evidence suggests that Arctic sea ice is declining due to climate warming related to the increased abundance of heat-trapping (greenhouse) gases in the atmosphere from human burning of coal, oil, and gas. Because greenhouse gases stay in the atmosphere for multiple decades, scientists do not expect any reversal in the downward trend in ice extent.
Despite year-to-year variations, satellite data show a decline of more than 13 percent per decade in September ice extent since the satellite record began in 1979. The satellite data are less comprehensive before 1979, but shipping records and other evidence show that the ice extent has been in a continued state of decline for at least the last one hundred years. Climate models have long predicted that summer sea ice would disappear as temperatures rose in the Arctic, but ice loss has occurred even faster than any models predicted. Researchers now expect that the Arctic Ocean will be virtually ice-free in summer well before the end of this century, perhaps as early as the 2030s.
Impacts of reduced sea ice
Arctic amplification refers to the magnified warming in the Arctic relative to the rest of the globe—the rate of warming in the Arctic is nearly two times the global average. While a number of mechanisms contribute to Arctic amplification, the loss of Arctic sea ice cover plays a dominant role due to the reduction in the net albedo—a measure of how well a surface reflects incoming solar energy.
In 2012, the Parry Channel—a portion of the long-sought Northwest Passage—went from ice-choked on July 17 (left) to open water on August 3 (right). Sea ice reflects most of the sunlight energy that hits it back into space; open water can absorb heat energy from the sun.
White or light-colored sea ice is very reflective, so its albedo is higher than that of ocean water. With the huge increase in the area of ice-free water compared to a decade ago, the ocean can absorb much more heat than it used to. This, in turn, means that more heat energy is available to be released back into the atmosphere in autumn as sunlight wanes. As ice cover shrinks, areas of open water absorb heat that the ice would have reflected. The water warms up, and before ice can form again in the fall the ocean must release some of that heat to the atmosphere. Scientists are concerned that this increased heat transfer to the atmosphere could magnify future climate warming trends.
Principle 8c
Sea Level is Rising and Coasts are Eroding
Melting of ice sheets and glaciers, combined with the thermal expansion of seawater as the oceans warm, is causing sea level to rise. There is strong evidence that global sea level is now rising at an increased rate and will continue to rise during this century.
While studies show that sea levels changed little from AD 0 until 1900, sea levels began to climb in the 20th century.
The two major causes of global sea-level rise are thermal expansion caused by the warming of the oceans (since water expands as it warms) and the loss of land-based ice (such as glaciers and polar ice caps) due to increased melting. Read more…
Sea Level is Rising and Coasts are Eroding
Records and research show that sea level has been steadily rising at a rate of 0.04 to 0.1 inches per year since 1900. This rate may be increasing. Since 1992, new methods of satellite altimetry (the measurement of elevation or altitude) indicate a rate of rise of 0.12 inches per year. This is a significantly larger rate than the sea-level rise averaged over the last several thousand years.
Seawater is beginning to move onto low-lying land and to contaminate coastal fresh water sources and beginning to submerge coastal facilities and barrier islands. Sea-level rise increases the risk of damage to homes and buildings from storm surges such as those that accompany hurricanes.
Sea-level rise, along with the loss of sea ice in the Arctic, exposes shorelines to rapid coastal erosion. For most of the year, landfast sea ice buffered Alaska's northern coastline from waves, winds, and currents. Current observations and future projections of melt and sea level rise show that as sea ice melts earlier and forms later in the year, Arctic coasts will be more vulnerable to storm surge and wave energy. Particularly in the autumn, when large storms are occur in the region, land is exposed to shoreline erosion and terrestrial habitat loss.
Click the button below for a summary of how sea level rise will affect Washington state and the Pacific Northwest  
How Will Climate Change Affect the Coast and Ocean of Washington state and the Pacific Northwest?
A major driver of climate change impacts on Washington’s coasts is sea level rise, which is expected to affect most locations in Washington State. Key impacts include inundation of low-lying areas, increased storm surge reach, flooding, erosion, and changes and loss of habitat types. These impacts are likely to affect a wide range of communities, species, and infrastructure. Since 2007, studies have provided more regional specificity about how coastal ocean conditions may change in the Pacific Northwest, particularly with respect to sea level rise and ocean acidification.
Source: http://cses.washington.edu/db/pdf/snoveretalsok2013sec9.pdf
- Changes in Pacific Northwest coastal waters are strongly influenced by changes in global sea level and ocean conditions. Global sea level is projected to increase by +11 to +38 inches by 2100 (relative to 1986-2005), depending on the amount of 21st century greenhouse gas emissions. This will cause Washington's marine waters to rise, although how much change occurs at a specific location depends on a variety of local factors, as described below. Additionally, coastal sea surface temperatures and the acidity of Washington’s marine waters are projected to increase.
- Sea level is projected to continue rising in Washington through the 21st century, increasing by +4 to +56 inches by 2100, relative to 2000.
- Multiple factors affect local sea level. The amount of sea level change at a given location and time will depend both on how much global sea level rises and on local factors such as seasonal wind patterns, vertical land movement associated with plate tectonics, and sediment compaction. These local factors may result in higher or lower amounts of local sea level rise (or even declining sea level) relative to global projections depending on the rate and direction of change in these local factors.
- Sea level rise is expected to continue in most of Washington’s coastal areas. Most areas in Washington are expected to experience sea level rise through 2100. This includes the Puget Sound region and the central and southern outer coast.
- A few locations may experience declining sea level. Previous research indicates that declining sea level is possible in the Northwest Olympic Peninsula if the rate of global sea level rise is very low and if the rate of uplift caused by plate tectonics continues to exceed the rate of global sea level rise. Although most current global projections would result in sea level rise for the northwest Olympic Peninsula, it is not yet possible to conclusively rule out a decline in sea level for that region.
- Sea level rise is not expected to occur in a consistent, linear fashion. Episodes of faster and slower rise, as well as periods of no rise, are likely due in part to natural variability, especially as you move to regional (e.g., the Pacific Northwest) and smaller scales.
- Sea level rise increases the potential for higher tidal/storm surge reach and increased coastal inundation, erosion, and flooding. Even small amounts of sea level rise can shift the risk of coastal hazards in potentially significant ways.
- Sea level rise will permanently inundate low-lying areas. Where and how much inundation occurs will depend on the rate of sea level rise and shoreline characteristics. Communities and organizations that have mapped sea level rise inundation zones include the City of Olympia, City of Seattle, King County, the National Wildlife Federation (mapped for Puget Sound, southwestern Washington, and northwestern Oregon), the Swinomish Indian Tribal Community, and the Jamestown S’Klallam Tribe.
- Sea level rise will exacerbate coastal river flooding. Higher sea level can increase the extent and depth of flooding by making it harder for flood waters in rivers and streams to drain to the ocean or Puget Sound. Projected increases in both the size and frequency of high river flows due to climate change will compound this risk.
- Sea level rise increases the frequency of today’s extreme tidal/storm surge events. Higher sea level amplifies the inland reach and impact of high tides and storm surge, increasing the likelihood of today’s extreme coastal events. For example, +6 inches of sea level rise in Olympia shifts the probability of occurrence for the 100-year flood event from a 1% annual chance to 5.5% annual chance (1-in-18 year) event. With +24 inches of sea level rise, the 100-year flood event would become an annual event.
- Sea level rise can increase coastal erosion. Higher sea level and storm surge reach exposes more areas to erosion, which can affect the stability of coastal infrastructure. For example, analysis of beach erosion rates in Oregon for the period 1967-2002 found that significant beach erosion occurred in areas where relative sea level (north-central Oregon) increased. In contrast, beaches were relatively stable in areas experiencing sea level decline (e.g., along the southern Oregon coast, where the rate of uplift is greater than observed sea level rise).
- Sea level rise and changes in coastal ocean conditions[H] impact human, plant, and animal communities in important ways.
- Projected impacts. Impacts on human communities include the potential for increased damage to coastal infrastructure from storm surge or flooding permanent inundation of important commercial and industrial areas, loss of culturally important sites, and impacts on commercial fishing and shellfish harvesting.
- Adapting to sea level rise. Adaptive decisions based on sea level rise projections have already been made by the City of Olympia, City of Seattle, King County, Port of Bellingham, and the Swinomish Indian Tribal Community. Analyses of sea level rise impacts have also been completed by the Port of Seattle, the Jamestown S’Klallam Tribe, and Sound Transit.
- Sea level rise and changes in the marine environment will affect the geographical range, abundance, and diversity of Pacific Coast marine species and habitats.
- Coastal habitats. Increased inundation and erosion due to sea level rise are expected to cause habitat loss and shifts in habitat types. Locations more likely to experience habitat loss include low-lying areas, locations with highly erodible sediments, and areas where inland migration of coastal habitats is hindered by bluffs or human development. Vulnerable habitat types include coastal wetlands, tide flats, and beaches.
- Coastal species. Species potentially affected by sea level rise and changes in ocean conditions include key components of the marine foodweb (phytoplankton and zooplankton) as well as juvenile Chinook salmon and commercially important species such as Pacific mackerel, Pacific hake, oysters, mussels, English sole, and yellowtail rockfish. A species’ ability to adapt to climate change will vary based on physiology and life-cycle traits. How quickly climate changes, how large the change is, and the impact of other non-climate stressors such as fishing or pollution will also influence adaptive capacity.
For a good summary of climate change impacts on global sea level rise, visit the National Climate Assessment  
Pacific Northwest
See how rising sea levels will affect the Pacific Northwest under different global warming conditions. Be patient, the visualization tool can take a few minutes to load, depending on your internet connection.
You can zoom in or out and you can change the "map view" by dragging the map to see sea-level changes in different parts of the Pacific Northwest.
United States
Sea level is on the rise. Since 1900, it's gone up an average of eight inches around the world, due to global warming. And by 2100, it will be higher still — maybe as high as six-and-a-half feet above 1992 levels. That would put the homes of 7.8 million Americans at risk of being flooded.
Sea level rise: Global warming's yardstick
By Rosalie Murphy,
NASA's Jet Propulsion Laboratory
Source: http://climate.nasa.gov/news/2201/
One of the Argo array’s buoys begins collecting ocean temperature data after a science team deploys it in the Atlantic Ocean. Credit: Argo / University of California, San Diego.
Global sea levels have been ticking steadily higher by about an eighth of an inch (3.2 millimeters) each year since scientists began measuring them two decades ago. That’s why Carmen Boening, a research scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California, was so shocked in 2010 and 2011, when she saw a quarter-inch (five-millimeter) drop in sea level – a sudden reversal of the trend.
“We knew that either the sea was cooling, or there was less water in the ocean,” Boening said. Like metal, water contracts when it cools. “So we used NASA’s GRACE mission, which basically weighs water to tell us how much is present in different parts of the world, both in the ocean and on land. We found there was actually less water in the ocean.”
Water can’t just vanish. If it leaves the ocean, it has to show up somewhere else in the water cycle. Sure enough, Boening’s team found huge amounts of precipitation and flooding in Australia and South America. GRACE data suggested lots of water had evaporated from the ocean during the 2011 La Niña event. Then other wind patterns pushed the precipitation to Australia.
“It had to be a combination of all these events at once, and that’s why the drop was so large,” Boening said. “But at some point, it had to run off into the ocean. That’s what happened next.” A few months later, the ocean returned to the previous year’s levels and the upward trend resumed.
How NASA measures sea level
Global sea levels have risen by about 8 inches in the last 130 years. It might not sound like much – but the ocean covers about 70 percent of Earth’s surface and holds about 99 percent of its water. A tiny rise or fall involves a lot of water.
“Sea level rise is the yardstick for global warming,” said Josh Willis, a research scientist at JPL. “It’s the ruler by which we measure how much human activity has changed the climate. It’s the sum of the extra heat the ocean has absorbed and the water that’s melted off of glaciers and ice sheets.”
The Ocean Surface Topography Mission (OSTM)/Jason-2 measures sea surface height. Credit: NASA
Willis leads NASA’s Jason missions, satellites that measure sea level and ocean surface topography, or variations in ocean surface height at different areas around the globe. This variation is driven in part by deeper currents and weather patterns like El Niño, La Niña and the Pacific Decadal Oscillation. These patterns move huge amounts of water from some regions of the ocean to others, pushing some parts of the surface downward and others upward.
The GRACE twin satellites make detailed measurements of Earth's gravity field. Credit: NASA
The Gravity Recovery and Climate Experiment (GRACE) mission, which helped Boening and Willis track water during the 2011 La Niña, collects data using twin satellites orbiting Earth together. When the lead satellite encounters a slight change in Earth’s gravity, the force pulls it a little further from its partner. The second satellite measures the distance between them to estimate the strength of Earth’s gravity.
The planet’s gravity changes because different amounts of mass have piled up at different places. There’s a lot more Earth in the Himalaya, for example, than in the Mississippi Delta. Similarly, when water coalesces in a certain part of the ocean, it tugs on GRACE’s satellites a little harder.
But changes on land also play a role. For example, Greenland’s ice is melting. "As the land loses mass, its gravitational pull is not as strong, so it’s losing its ability to attract water,” Boening said. Though melting land ice from Greenland and glaciers account for about two-thirds of sea level rise to date, “sea level around Greenland is actually going down.”
Mass, height and heat
The ocean is also gaining heat. Small heat transfers happen constantly at the ocean’s surface and, eventually, the ocean swallows most of the heat greenhouse gases have trapped in Earth’s atmosphere. That heat warms the whole ocean, causing it to expand.
Expansion seems simple, but measuring it is a challenge. “Over 90 percent of the heat trapped inside Earth’s atmosphere by global warming is going into the oceans,” Willis said. Temperature data from 19th-century ship, compared to a set of 3,600 buoys measuring ocean temperature today, confirms that the ocean – especially its upper half – has warmed since 1870.
In the bottom half of the ocean, though, it’s harder to tell. Buoys measure only about halfway to the bottom, a depth of about 1.25 miles (2,000 meters). Over many decades, ocean currents pull water from the surface of the ocean toward its depths. Scientists have assumed the deep ocean has been warming, too – but a new paper by Willis and other JPL scientists found no detectable warming below that 1.25-mile (2,000-meter) mark since 2005.
“We can’t see heat in the deep ocean yet. The effect has been too small over our ten years of data, and the ways the ocean can get heat down deep are very slow. It might take a hundred years,” Willis said. “We still have to rely on the data and not our simulations to figure out what’s going on in the deep ocean. So we have some more scientific work to do.”
On the other hand, another paper from the same journal found that earlier studies drastically underestimated warming in the Southern Ocean, since the 1970s. New estimates suggest it absorbed anywhere from 25 to 58 percent more heat than previous researchers thought.
Scientists will continue learning more about the ocean’s intricacies, correcting assumptions and revising old estimates. But Willis warns against losing sight of the strong global trend toward rising sea levels.
“The picture is very simple,” he said. “The ocean heats up and causes sea level rise. Ice melts and causes sea level rise. We can see the results at the shoreline.”
This feature is part of a series exploring how NASA monitors Earth’s water cycle. Other ocean missions include Aquarius, which measures the ocean’s salinity to offer scientists clues about evaporation and rainfall patterns and changes in the ocean’s density, which can drive circulation patterns. The Surface Water and Ocean Topography (SWOT) mission will improve topography measurements at the coast after its 2020 launch. Learn more about all of NASA’s Earth science missions.
Principle 8d
Changing precipitation and temperature are altering the distribution and availability of water
Climate plays an important role in the global distribution of freshwater resources. Changing precipitation patterns and temperature conditions will alter the distribution and availability of freshwater resources, reducing reliable access to water for many people and their crops. Read more…
Changing precipitation and temperature are altering the distribution and availability of water.
Winter snowpack and mountain glaciers that provide water for human use are declining as a result of global warming. There are many unknowns in terms of how ecosystems and societies will be impacted by the loss of snow and ice which serve as reservoirs of freshwater.
Runoff patterns are shifting in many parts of the world with more rain and less snow falling as precipitation.
Source: https://www.fws.gov/pacific/Climatechange/changepnw.html
Climate Change: Temperature and Precipitation
Temperature records indicate that Pacific Northwest temperatures increased 1.5°F since 1920. Regionally downscaled climate models project increases in annual temperature of, on average, 2.0°F by the 2020s, 3.2 °F by the 2040s, and 5.3°F by the 2080s (compared to the 1970-1999 period), averaged across all climate models. Projected changes in annual precipitation, averaged over all models, are small (+1 to +2%), but some models project wetter autumns and winters and drier summers. Increases in extreme high precipitation (falling as rain) in the western Cascades and reductions in snowpack are key projections from high-resolution regional climate models.
Table 1 is excerpted from The Washington Climate Change Impacts Assessment , University of Washington, Climate Impacts Group, June 2009
Hydrology
Changes in temperature and precipitation will continue to decrease snow pack, and will affect stream flow and water quality throughout the Pacific Northwest region. Warmer temperatures will result in more winter precipitation falling as rain rather than snow throughout much of the Pacific Northwest, particularly in mid-elevation basins where average winter temperatures are near freezing. This change will result in:
- Less winter snow accumulation,
- Higher winter streamflows,
- Earlier spring snowmelt,
- Earlier peak spring streamflow and lower summer streamflows in rivers that depend on snowmelt (most rivers in the Pacific Northwest)
What does climate change mean for water resources? Source: http://water.oregonstate.edu/sites/default/files/water_and_climate_in_the_pacific_northwest_v3.pdf
Historically, mountain snowpack has served as natural storage for summertime water supply in much of the Pacific Northwest. Increasing winter temperatures have left mountain snowpack, particularly lower-mid elevation snowpack vulnerable. In snowmelt-dominated basins in the Western U.S., there has been a shift in the timing of streamflow to earlier in spring, primarily driven by an increase in winter and spring temperatures. Studies show that human influence is responsible for 60% of the climate-related trends in historical streamflow and snowpack in the western U.S from 1950-1999.
Earlier spring snowmelt will shift the timing of peak flows in streams; some streams will peak earlier in the year. Global climate models also suggest that a decrease in summer precipitation is also likely in the future, which means the small amount of precipitation that the state receives in the summer will be even less in the future.
A viable water supply is needed for irrigation, residential and commercial water use, fish propagation and survival and overall ecosystem health. With a (1.8 ̊F) 1 °C rise in temperature, the amount and seasonality of water supply is projected to shift with seasonal changes in temperature and precipitation. Data already show a decline in basins with a snowmelt influence — earlier peak flow, lower summer flow, lower spring snowpack.
Cascade mountain snowpacks are projected to be less than half of what they are today by mid-century, with lower elevation snowpacks being the most vulnerable. Through the end of the 21st century, April 1 snow water equivalent is projected to decrease in the Willamette River Basin. Water demands are projected to increase throughout the 21st century, particularly in urban areas, adding an additional stress to water availability. Some climate change scenarios for the U.S. Pacific Northwest using global general circulation models (GCM) suggest a temperature-induced shift from snow to rain and earlier snowmelt. Similarly, in the Colorado River Basin, future projections in changes in runoff using a more topographically-complex regional climate model (RCM) are dominated by a combination of winter snow cover change, increase in spring temperature and decrease in summer precipitation.
Other factors such as increased demand will pose an additional stressor to water availability. Water demands are projected to increase throughout the 21st century, particularly in urban areas. Part of the increased demand will likely be due to summer temperatures, and some of the demand can be attributed to overall population growth of the state. Data from Portland Water Bureau shows that there is a relationship between annual average water consumption and annual average temperature. While demand during winter months is expected to remain constant, research on urban water demand suggests that temperature is the most influential climate variable on water consumption, particularly among single family residential households. These impacts are also evident at multiple scales, including the household, neighborhood, and region.
Water quality is also likely to be impacted with rising air temperature and seasonal shifts in flow availability. Water temperatures are expected to rise as air temperature increases in the 21st century, particularly in urban streams where natural riparian vegetation is typically lacking. A decline in summer stream flow will exacerbate water temperature increases, because the low volume of water will absorb the sun’s rays more than during times with larger instream flows. However, an increase in air temperature alone does not lead to major changes in stream temperature. Changes in riparian vegetation (either land use changes or climate-related) will influence streamflow and water temperature. Changes in water temperature can have significant implications for stream ecology and salmon habitat. Smaller streams in transient rain-snow basins and in eastern Oregon will be the most vulnerable to increasing summer air temperature and diminished low flows. Sediment and phosphorus loads, which are a detriment to water quality, are expected to increase in winter as winter flow is projected to rise. It will be important for water resource managers statewide to include considerations for climate change in future planning.
  Good summaries of impacts on freshwater can be found in the National Climate Assessment
Despite Gains, Western Snowpack Trending Downward in the Continental U.S.
Western Snowpack Trending Downward
By Climate Central
The first of April is the end of the wet season across the West, the time of year when the region gets most of its precipitation. As such, it is a good time to take inventory of the snowpack in the mountains. The snow readings are important during this time of the year, as several locations depend on the meltwater from that snowpack for drinking water and irrigation through the drier and hotter summer months. It also serves as a long-term measurement, as in a warming world, the spring snowpack will melt more quickly as summer nears.
While the western snowpack levels have improved over last year’s dismally low levels overall, there are still places below average in Colorado, Montana, and New Mexico.
Climate Change Impacts on Hydrology of the Western Cascades
Click on the graphics below to enlarge them so you can learn about how climate change is going to affect hydrology in the Cascades, which has major implications for ecosystems and human society.
Source: http://depts.washington.edu/paigle/workshops/mbs/1030Elsner.pdf
Principle 8e
Extreme Weather Events are Increasing
Incidents of extreme weather are projected to increase as a result of climate change—indeed they already have increased and are projected to increase much more. Many locations will see a substantial increase in the number of heat waves they experience per year and a decrease in episodes of severe cold. Precipitation events are expected to become less frequent but more intense in many areas, and droughts will be more frequent and severe in areas where average precipitation is projected to decrease. Explore the graphics on this page to see how things have already changed.
Extreme Weather Events in the PNW
Recent climate modeling results indicate that "extreme" weather events are becoming much more common. That is in large part because rising average temperatures produce a more variable climate system. Click the button below  to learn more.
Extreme Weather Events in the Pacific Northwest
Source: http://www.ecy.wa.gov/climatechange/extremeweather_more.htm
More extreme weather events
Recent climate modeling results indicate that "extreme" weather events may become more common. Rising average temperatures produce a more variable climate system. What can we expect with weather changes? Localized events could include:
- windstorms
- heat waves, droughts
- storms with extreme rain or snow, and
- dust storms.
- heat waves, droughts
What creates more extreme weather?
Carbon dioxide (CO2) from cars, industries and power plants trap heat near the earth's surface. More heat means more energy. Adding so much energy to the atmosphere creates the potential for more extremes.
Washington residents experienced weather extremes in the fall of 2006. First, record rains churned up rivers and caused landslides and floods around Western Washington. Then, as the water began to clear, a record cold with ice and snowfall paralyzed parts of the west side of the state. That was closely followed by record gale force winds, 14 deaths, extensive property damage, and days of power outages for 1 million homes and businesses in Washington.
Climatologists say extreme weather events will become more common as our climate heats up.
Droughts
Multiple droughts since 1971 resulted in dry streams, withered and abandoned crops, dead fish, record low rivers and declining ground water levels. Between 2000 and 2005, Washington experienced two drought emergencies, resulting in drought declarations by the state's governor.
How will droughts affect us?
- Less summer water for farms, cities and forests.
- Less water for irrigation due to earlier high river flows and decreasing soil moisture.
- Less water for city municipal water sources, affecting industries, businesses and homeowners.
- With a 3.6 degree warming, droughts will occur more frequently:
- what have been historic 50-year droughts will now occur every 10 years
- what have been historic 10-year droughts will now occur about every 2 years.
- Increased forest fires. Dry and dying trees are a set-up for forest fires. Large forest fires (more than 500 acres) have increased from an average of six per year in the 1970's to 21 per year in the early 21st century. Forest fires release greenhouse gases and destroy the trees that can absorb CO2 from the air.
How will the changing weather affect our economy?
The Yakima River Basin produces crops worth about $1 billion annually, mostly from perennial crops. Many of the Yakima Basin perennial crop growers face water shortages. In the low water year of 2001, reduced water allocation resulted in economic losses of $140 - $195 million.
High river flows occurring earlier in the year will result in a 20-40% reduction in water availability by 2050. One potential solution is more reservoir storage, but this is expensive: the proposed Black Rock Reservoir would cost $3.5 to $4 billion.
Federal and state costs of fighting wildfires may exceed $75 million per year by the 2020’s (with a 2 degree warming), and that’s 50% higher than current expenditures. Economic impacts from fires include:
- lost timber value,
- lost recreational expenditures,
- human health costs, and
- air pollution and habitat loss.
What can be done to protect water supplies?
Conservation practices can help reduce demand for water. Municipalities and irrigation districts need to seek new storage areas to even out the flow and demand for water.
Floods more extreme & often
Warmer temperatures result in more winter precipitation falling as rain rather than snow throughout much of the Pacific Northwest. This change will result in:
- higher winter stream flows with more floods,
- earlier peak spring stream flow (already 10-30 days earlier than 1948) and
In contrast to more rain when we don’t need it, there will be less water when we do need it. Substantial reductions in summer stream flow will adversely affect
- farmers who rely on irrigation,
Sources: University of Washington – Climate Impacts Group
More landslides
Rain-soaked soils are prone to slipping, which results in landslides affecting homes, businesses, power lines and transportation routes. More rain could increase the risk and frequency of landslides.
Carlyon Beach: one landslide story
Five years of above average winter rainfall contributed to a massive slide in the Hunter Point, Carlyon Beach area of Thurston County in February 1999.
Homes and roads were built on an ancient 60-acre slide. Forty-one homes were damaged by the slide. Thirty three homes in the area were "red-tagged" or declared uninhabitable. Homeowners were requested to evacuate because of severe structural damage. The cost for the proposed repairs was between $4 and $39 million - with no guarantees.
The landslide stretched 3,000 feet along the Squaxin Passage shoreline and extended inland 900 feet. The steep slopes of the landslide reached heights of 15 feet.
A Carlyon Beach area home once valued at $200,000 dropped to a value of $1,000. Ninety other properties in the Hunter Point, Carlyon Beach area dropped in value to almost nothing.
Landslides around the state
Slides over Hwy 12 and Hwy 101 have closed routes and cost millions to clear. The City of Seattle attributes cost of $20 million to landslides caused by major storms during the winter of 1996-97.
Sources: Impacts of Climate Change on Washington's Economy (University of Oregon)
More stormwater = more pollution
More precipitation falling as rain rather than snow quickly runs off the land, especially over paved surfaces, and areas cleared of forest or natural vegetation. In a warmer climate, precipitation falling as rain could increase fall and winter flooding in susceptible river basins.
Earlier river runoff
As the spring thaws come earlier and faster, the peak period for snow melt could move back weeks or months. This would result in less summer water when it’s needed most for crops, fish, cities and hydropower generation.
Urban water supply systems that rely on storage of water in mountain snow pack will see less water coming into their reservoirs in late spring/early summer. This will be combined with an increased demand for water caused by higher temperatures. For some systems, these impacts will be substantial.
Sources: Climate Impacts on Pacific NW Water Resources – (University of Washington Climate Impacts Group)
Changing growing season
With a warming climate, the growing season for some plants may be extended. The last frost would come earlier in the spring and first frost would come later in the fall. However, this advantage can be erased if there is limited water to nourish forests and crops during hot weather.
Studies in Washington wine country conclude that more frequent series of extreme hot or cold days can result in damage and loss, even if the rest of the season is more moderate.
Warmer winters allow forest and crop pests to reproduce longer and suffer less winter die offs, so pest populations can boom. This is already happening in Canada and even NE Washington forests where pine bark beetles are rapidly devastating large tracts of forests.
Ecosystem changes from shifting seasons can
Multiple emergency response needs
Extreme weather across the state can
Delayed emergency response can become more common.
The storm of December 2006 is considered more devastating than that of the January 20, 1993 storm, which left five people dead, at least 79 homes destroyed and about $130 million in damage.
Damages from the 2006 storm have yet to be assessed, but the death toll appears to be higher, and the impact on the power grid appears to be more severe. Seattle City Light reconnected 175,000 buildings, compared with 110,000 in the Inauguration Day storm. Puget Sound Energy reported more damage to major transmission lines. One million homes and businesses were without power for up to a week while low temperatures hovered in the mid 20s.
Move through the slides below to see how weather is becoming more extreme through the seasons in the continental U.S.
For a good summary of climate change impacts on extreme weather events, visit the National Climate Assessment:
For a great interactive on billion dollar climate disasters with maps, statistics, timelines, and more visit this NOAA site:
Risk of Extreme Weather From Climate Change to Rise Over Next Century, Report Says
By SABRINA TAVERNISEJUNE 22, 2015
Source: http://www.nytimes.com/2015/06/23/science/risk-of-extreme-weather-from-climate-change-to-rise-over-next-century-report-says.html
Drought in Puerto Rico has left the La Plata reservoir nearly empty. A study in The Lancet predicts a growing number of people will be affected by extreme weather over the next century.
Credit
Alvin Baez/Reuters
WASHINGTON — More people will be exposed to floods, droughts, heat waves and other extreme weather associated with climate change over the next century than previously thought, according to a new report in the British medical journal The Lancet.
The report, published online Monday, analyzes the health effects of recent episodes of severe weather that scientists have linked to climate change. It provides estimates of the number of people who are likely to experience the effects of climate change in coming decades, based on projections of population and demographic changes.
The report estimates that the exposure of people to extreme rainfall will more than quadruple and the exposure of people to drought will triple compared to the 1990s. In the same time span, the exposure of the older people to heat waves is expected to go up by a factor of 12, according to Peter Cox, one of the authors, who is a professor of climate-system dynamics at the University of Exeter in Britain.
Climate projections typically are expressed as averages over large areas, including vast expanses, like oceans, where people do not live. The report calculates the risk to people by overlaying areas of the highest risk for climate events with expected human population increases. It also takes into account aging populations — for example, heat waves pose a greater health risk to old people.
Men in Pakistan cool themselves in a river near Islamabad during a heatwave. The Lancet study is part of an effort to look at how climate might change life on earth for people.
Credit
Aamir Qureshi/Agence France-Presse — Getty Images
The report is part of a series of efforts to analyze how climate change might affect human health. Other major climate reports, the Intergovernmental Panel on Climate Change, a global document, and the National Climate Assessment in the United States, have addressed the issue. But Professor Cox said the new report was the first large-scale effort to quantify the effects that different types of extreme weather would have on people.
“We are saying, let’s look at climate change from the perspective of what people are going to experience, rather than as averages across the globe,” he said. “We have to move away from thinking of this as a problem in atmospheric physics. It is a problem for people.”
The Lancet first convened scientists on the topic in 2009, and produced a report that declared climate change was “the biggest global health threat of the 21st century.” Monday’s report notes that global carbon emission rates have risen above the worst-case scenarios used in 2009, and that in the absence of any major international agreement on cutting those rates, projections of mortality and illness and other effects, like famine, have worsened.
“Everything that was predicted in 2009 is already happening,” said Nick Watts, a public health expert at the Institute for Global Health at University College London, who led the team of more than 40 scientists from Europe, Africa and China that produced the report. “Now we need to take a further step forward. The science has substantially moved on.”
For years, climate change was presented in terms of natural habitats and the environment, but more recently, experts have been looking at how it might change life on earth for people. Scientists and some governments are trying to frame the dangers of climate change in health terms in order to persuade people that the topic is urgent, not simply a distant matter for scientists. Governments around the world are preparing for a United Nations summit meeting on climate change in Paris in December to discuss new policies to limit greenhouse-gas emissions.
The report measures the increase over time in “exposure events,” which it defines as the number of times people experience any given extreme weather event.
By the end of the century, the report estimates, the exposure to heat waves each year for older people around the world is expected to be around 3 billion more cases than in 1990. The number of times people of all ages are exposed to drought would increase by more than a billion a year. The rise in exposures to extreme rain would be around 2 billion a year by the end of the century, in part because populations are growing.
Even without climate change, the health problems that come along with economic development are significant, the authors note. About 1.2 million people died from illnesses related to air pollution in China in 2010, the report said.
Most broad climate reports do not go further than explaining the science, but much of the Lancet report is dedicated to policy prescriptions to slow or stop climate change and mute its effects on health. It notes that using fewer fossil fuels “is no longer primarily a technical or economic question — it is now a political one,” and urges governments to enact changes that would accomplish that.
Principle 8f
Oceans are becoming more acidic
The chemistry of ocean water is changed by absorption of carbon dioxide from the atmosphere. Increasing carbon dioxide levels in the atmosphere is causing ocean water to become more acidic, threatening the survival of shell-building marine species and the entire food web of which they are a part.
The oceans are not, in fact, acidic, but slightly basic. Acidity is measured using the pH scale, where 7.0 is defined as neutral, with higher levels called "basic" and lower levels called "acidic". Historical global mean seawater values are approximately 8.16 on this scale, making them slightly basic. To put this in perspective, pure water has a pH of 7.0 (neutral), whereas household bleach has a pH of 12 (highly basic) and battery acid has a pH of zero (highly acidic). Read More…
Oceans are becoming more acidic
The chemistry of ocean water is changed by absorption of carbon dioxide from the atmosphere. Increasing carbon dioxide levels in the atmosphere is causing ocean water to become more acidic, threatening the survival of shell-building marine species and the entire food web of which they are a part.
The oceans are not, in fact, acidic, but slightly basic. Acidity is measured using the pH scale, where 7.0 is defined as neutral, with higher levels called "basic" and lower levels called "acidic". Historical global mean seawater values are approximately 8.16 on this scale, making them slightly basic. To put this in perspective, pure water has a pH of 7.0 (neutral), whereas household bleach has a pH of 12 (highly basic) and battery acid has a pH of zero (highly acidic).
By the end of this century, if concentrations of CO2 continue to rise at current rates, we may expect to see changes in pH that are three times greater and 100 times faster than those experienced during the transitions from glacial to interglacial periods. Such large changes in ocean pH have probably not been experienced on the planet for the past 21 million years.
However, even a small change in pH may lead to large changes in ocean chemistry and ecosystem functioning. Over the past 300 million years, global mean ocean pH values have probably never been more than 0.6 units lower than today. Ocean ecosystems have thus evolved over time in a very stable pH environment, and it is unknown if they can adapt to such large and rapid changes. Based on the emissions scenarios of the Intergovernmental Panel on Climate Change and general circulation models, we may expect a drop in ocean pH of about 0.4 pH units by the end of this century, and a 60% decrease in the concentration of calcium carbonate, the basic building block for the shells of many marine organisms.
For a good summary of climate change impacts on ocean acidification, visit the National Climate Assessment:
It's Not Just Acidification that's Harming the Oceans: Two Other Major Effects of Climate Change on the Earth's Oceans
Oceans are heating up too. Learn how ocean temperatures have changed over the past century:
Climate change may be choking the ocean’s oxygen supply too. Learn about the results of an indepth study of dissolved oxygen in the Earth's oceans since 1958.
Featured Interview
Principle 8g
Ecosystems are changing
Ecosystems on land and in the ocean have been and will continue to be disturbed by climate change. Animals, plants, bacteria, and viruses will migrate to new areas with favorable climate conditions. Infectious diseases and certain species will be able to invade areas that they did not previously inhabit.
In recent years, millions of pinyon pine trees in the American Southwest have died due to drought and high heat. Global climate models predict persistent drought for the American Southwest under current rates of change. They also project changes of similar magnitude to many other ecosystems across the western US and across the globe.
Read more…
Ecosystems are changing
Ecosystems on land and in the ocean have been and will continue to be disturbed by climate change. Animals, plants, bacteria, and viruses will migrate to new areas with favorable climate conditions. Infectious diseases and certain species will be able to invade areas that they did not previously inhabit.
In recent years, millions of pinyon pine trees in the American Southwest have died due to drought and high heat. Global climate models predict persistent drought for the American Southwest under current rates of change. They also project changes of similar magnitude to many other ecosystems across the western US and across the globe.
In the Pacific Northwest, the current warming trend is expected to continue, with average warming of 2.1 °C (3.78 °F) by the 2040s and 3.8 °C (6.84 °F) by the 2080s; precipitation may vary slightly, but the magnitude and direction are uncertain.
This warming will have far-reaching effects on aquatic and terrestrial ecosystems in the Pacific Northwest and western Montana.
Hydrologic systems will be especially vulnerable as watersheds become increasingly rain dominated, rather than snow dominated, resulting in more autumn/winter flooding, higher peak flows, and lower summer flows. It will also greatly reduce suitable fish habitat, especially as stream temperatures increase above critical thresholds. In forest ecosystems, higher temperatures will increase stress and lower the growth and productivity of lower elevation tree species. Distribution and abundance of plant species may change over the long term, and increased disturbance (wildfire, insects, and invasive species) will cause rapid changes in ecosystem structure and function across broad landscapes. This in turn will alter habitat for a wide range of animal species by potentially reducing connectivity and late successional forest structure.
Coping with and adapting to the effects of an altered climate will become increasingly difficult after the mid-21st century, although adaptation strategies and tactics are available to ease the transition to a warmer climate. For roads and infrastructure, tactics for increasing resistance and resilience to higher peak flows include installing hardened stream crossings, stabilizing streambanks, designing culverts for projected peak flows, and upgrading bridges and increasing their height. For fisheries, tactics for increasing resilience of native trout to altered hydrology and higher stream temperature include restoring stream and floodplain complexity, reducing road density near streams, increasing forest cover to retain snow and decrease snow melt, and identifying and protecting cold-water refugia. For vegetation, tactics for increasing resilience to higher temperature and increased disturbance include accelerating development of late-successional forest conditions by reducing density and diversifying forest structure, managing for future range of variability in structure and species, including invasive species prevention strategies in all projects, and monitoring changes in tree distribution and establishment at tree line. For wildlife, tactics for increasing resilience to altered habitat include increasing diversity of age classes and restoring a patch mosaic, increasing fuel reduction treatments in dry forests, using conservation easements to maintain habitat connectivity, and removing exotic fish species to protect amphibian populations.
Learn about some of the ecosystem changes occurring in the Pacific Northwest by clicking on the topics below  
Impacts on Pacific Northwest Ecosystems
Higher temperatures, changing streamflows, and increases in pests and disease threaten forests, agriculture, and fish populations in the Northwest.
Forests make up nearly half of the Northwest landscape. These areas provide important habitat for fish and wildlife and support local economies, recreation, and traditional tribal activities. Forests have become warmer and drier due to rising temperatures, changes in precipitation, and reduced soil moisture. These stresses make trees more susceptible to insect outbreaks and disease and make forests highly flammable. An increase in the number and size of wildfires has been observed in the region in recent decades. These impacts are expected to worsen in the future, resulting in larger areas burned each year and expanded spread of pests, including the mountain pine beetle. Some types of forests and other ecosystems at high elevations are also expected to disappear from the region by the end of the century from inability to survive changing climatic conditions. These changes are likely to have significant effects on local timber revenues and bioenergy markets.
Under hotter, drier conditions, insects and fire can have large cumulative impacts on forests. This is expected to be the dominant driver of forest change in the near future. The top map shows areas burned between 1984 and 2008 or affected by insects or disease between 1997 and 2008. The bottom map indicates the expected increase in area burned resulting from a 2.2°F warming in average temperature. Source: USGCRP 2014
Commercial fish and shellfish harvested in the Northwest were valued at $480 million in 2011. Warming waters have already contributed to earlier migration of sockeye salmon in some streams and earlier growth of algal blooms in some lakes. Warmer waters are likely to increase spring and summer disease and mortality in Chinook and sockeye salmon in some river basins. Species that spend all or part of their lives in rivers, including salmon, steelhead, and trout, will suffer from decreased summer flows and increased flooding and winter flows. Projections suggest that suitable habitat for the four trout species in the region will decline by an average of 47% near the end of this century, compared to past decades.
Ocean acidification is also expected to negatively impact shellfish, including oysters, and others species, including Pacific salmon, resulting in economic and cultural implications. Warmer coastal waters may alter migratory patterns and areas of suitable habitat for marine species, resulting in changes in abundances.
Source: https://www.epa.gov/climate-impacts/climate-impacts-northwest
Aquatic Ecosystems and Fish
Source: http://cses.washington.edu/db/pdf/daltonetal678.pdf
The historic decline of wild salmon in the Northwest has galvanized the region and country around numerous efforts to restore and protect the populations that remain—a signifcant challenge that is all the more so given projected future climate change. Higher water temperatures, shifts in streamflows, and altered estuary and ocean conditions associated with projected climate change will affect the region’s native salmon throughout their complex life cycles:
tribute to significant changes in estuarine habitats.
In contrast, young “ocean-type” chinook, pink salmon (O. gor- buscha), and chum salmon (O. keta) migrate to the sea just a few months after hatching, spend much time acclimating in estuary waters before their ocean life cycle, and the adults return to spawn in the summer and fall in the mainstream river and lower reaches of tributaries. Accordingly, changes in estuarine habitats are likely to be especially important. Understanding these complexities will be necessary to effectively address the added stressors associated with climate change in salmon restoration efforts across the Northwest.
Forest Ecosystems
Source: http://nca2014.globalchange.gov/report/regions/northwest
Evergreen coniferous forests are a prominent feature of Northwest landscapes, particularly in mountainous areas. Forests support diverse fish and wildlife species, promote clean air and water, stabilize soils, and store carbon. They support local economies and traditional tribal uses and provide recreational opportunities.
Climate change will alter Northwest forests by increasing wildfire risk and insect and tree disease outbreaks, and by forcing longer-term shifts in forest types and species. Many impacts will be driven by water deficits, which increase tree stress and mortality, tree vulnerability to insects, and fuel flammability. The cumulative effects of disturbance – and possibly interactions between insects and fires – will cause the greatest changes in Northwest forests. A similar outlook is expected for the Southwest region.
Although wildfires are a natural part of most Northwest forest ecosystems, warmer and drier conditions have helped increase the number and extent of wildfires in western U.S. forests since the 1970s. This trend is expected to continue under future climate conditions. By the 2080s, the median annual area burned in the Northwest would quadruple relative to the 1916 to 2007 period to 2 million acres. Averaged over the region, this would increase the probability that 2.2 million acres would burn in a year from 5% to nearly 50%. Within the region, this probability will vary substantially with sensitivity of fuels to climatic conditions and local variability in fuel type and amount, which are in turn a product of forest type, effectiveness of fire suppression, and land use. For example, in the Western Cascades, the year-to-year variability in area burned is difficult to attribute to climate conditions, while fire in the eastern Cascades and other specific vegetation zones is responsive to climate. How individual fires behave in the future and what impacts they have will depend on factors we cannot yet project, such as extreme daily weather and forest fuel conditions.
Higher temperatures and drought stress are contributing to outbreaks of mountain pine beetles that are increasing pine mortality in drier Northwest forests. This trend is projected to continue with ongoing warming. Between now and the end of this century, the elevation of suitable beetle habitat is projected to increase as temperature increases, exposing higher-elevation forests to the pine beetle, but ultimately limiting available area as temperatures exceed the beetles’ optimal temperatures. As a result, the proportion of Northwest pine forests where mountain pine beetles are most likely to survive is projected to first increase (27% higher in 2001 to 2030 compared to 1961 to 1990) and then decrease (about 49% to 58% lower by 2071 to 2100). For many tree species, the most climatically suited areas will shift from their current locations, increasing vulnerability to insects, disease, and fire in areas that become unsuitable. Eighty-five percent of the current range of three species that are host to pine beetles is projected to be climatically unsuitable for one or more of those species by the 2060s while 21 to 38 currently existing plant species may no longer find climatically appropriate habitat in the Northwest by late this century.
Coastal Ecosystems
Source: http://cses.washington.edu/db/pdf/daltonetal678.pdf
The region’s marine coastal areas stand to experience a wide range of climate impacts, in both type and severity. These impacts include increases in ocean temperature and
acidity, erosion, and more severe and frequent inundation from the combined effects of rising sea levels and storms, among others.
Increases in coastal inundation and erosion are key concerns. A recent assessment determined that the coastal areas of Washington and Oregon contain over 56,656 hectares (140,000 acres) of land within 1.0-meter (3.3-feet) elevation of high tide. Rising sea levels coupled with the possibility of intensifying coastal storms will increase the likelihood of more severe coastal flooding and erosion in these areas.
The Northwest is also facing the challenge of increasing ocean acidification, and is experiencing these changes earlier, and more acutely, than most other regions around the globe. Changes in ocean chemistry resulting from higher global concentrations of atmospheric CO2, combined with regional factors that amplify local acidification, are already adversely affecting important NW marine species.
The combined effects of these observed and projected climate impacts represent a significant challenge to the region. The human response to the changes in our coastal systems will play a large role in determining the long-term resilience of NW coasts and the ongoing viability of the region’s coastal communities, and the viability of shallow-water and estuarine ecosystems in particular.
For a good summaries of climate change impacts on tribes, the Northwest, and aquatic ecosystems in the Rockies, explore these publications:
Climate Impacts on Ecosystems
Source: http://www.epa.gov/climatechange/impacts-adaptation/ecosystems.html
Climate is an important environmental influence on ecosystems. Climate changes and the impacts of climate change affect ecosystems in a variety of ways. For instance, warming could force species to migrate to higher latitudes or higher elevations where temperatures are more conducive to their survival. Similarly, as sea level rises, saltwater intrusion into a freshwater system may force some key species to relocate or die, thus removing predators or prey that were critical in the existing food chain.
Climate change not only affects ecosystems and species directly, it also interacts with other human stressors such as development. Although some stressors cause only minor impacts when acting alone, their cumulative impact may lead to dramatic ecological changes. [1] For instance, climate change may exacerbate the stress that land development places on fragile coastal areas. Additionally, recently logged forested areas may become vulnerable to erosion if climate change leads to increases in heavy rain storms.
Changes in the Timing of Seasonal Life-Cycle Events
For many species, the climate where they live or spend part of the year influences key stages of their annual life cycle, such as migration, blooming, and mating. As the climate has warmed in recent decades, the timing of these events has changed in some parts of the country. Some examples are:
- Warmer springs have led to earlier nesting for 28 migratory bird species on the East Coast of the United States. [1]
- Northeastern birds that winter in the southern United States are returning north in the spring 13 days earlier than they did in the early 20th century. [4]
- In a California study, 16 out of 23 butterfly species shifted their migration timing and arrived earlier. [4]
Range Shifts
As temperatures increase, the habitat ranges of many North American species are moving northward in latitude and upward in elevation. While this means a range expansion for some species, for others it means a range reduction or a movement into less hospitable habitat or increased competition. Some species have nowhere to go because they are already at the northern or upper limit of their habitat.
For example, boreal forests are invading tundra, reducing habitat for the many unique species that depend on the tundra ecosystem, such as caribou, arctic fox, and snowy owl. Other observed changes in the United States include expanding oak-hickory forests, contracting maple-beech forests, and disappearing spruce-fir forests. As rivers and streams warm, warmwater fish are expanding into areas previously inhabited by coldwater species. [5] Coldwater fish, including many highly valued trout species, are losing their habitats. As waters warm, the area of feasible, cooler habitats to which species can migrate is reduced. [5] Range shifts disturb the current state of the ecosystem and can limit opportunities for fishing and hunting.
See the Agriculture and Food Supply Impacts & Adaptation page for information about how habitats of marine species have shifted northward as waters have warmed.
Food Web Disruptions
The Arctic food web is complex. The loss of sea ice can ultimately affect the entire food web, from algae and plankton to fish to mammals. Source: NOAA (2011)
The impact of climate change on a particular species can ripple through a food web and affect a wide range of other organisms. For example, the figure shows the complex nature of the food web for polar bears. Declines in the duration and extent of sea ice in the Arctic leads to declines in the abundance of ice algae, which thrive in nutrient-rich pockets in the ice. These algae are eaten by zooplankton, which are in turn eaten by Arctic cod, an important food source for many marine mammals, including seals. Seals are eaten by polar bears. Hence, declines in ice algae can contribute to declines in polar bear populations. [4] [5] [6]
Threshold Effects
In some cases, ecosystem change occurs rapidly and irreversibly because a threshold, or "tipping point," is passed.
One area of concern for thresholds is the Prairie Pothole Region in the north-central part of the United States. This ecosystem is a vast area of small, shallow lakes, known as "prairie potholes" or "playa lakes." These wetlands provide essential breeding habitat for most North American waterfowl species. The pothole region has experienced temporary droughts in the past. However, a permanently warmer, drier future may lead to a threshold change—a dramatic drop in the prairie potholes that host waterfowl populations and provide highly valued hunting and wildlife viewing opportunities. [3]
Similarly, when coral reefs become stressed, they expel microorganisms that live within their tissues and are essential to their health. This is known as coral bleaching. As ocean temperatures warm and the acidity of the ocean increases, bleaching and coral die-offs are likely to become more frequent. Chronically stressed coral reefs are less likely to recover.
Pathogens, Parasites, and Disease
Climate change and shifts in ecological conditions could support the spread of pathogens, parasites, and diseases, with potentially serious effects on human health, agriculture, and fisheries. For example, the oyster parasite, Perkinsus marinus, is capable of causing large oyster die-offs. This parasite has extended its range northward from Chesapeake Bay to Maine, a 310-mile expansion tied to above-average winter temperatures. [8] For more information about climate change impacts on agriculture, visit the Agriculture and Food Supply Impacts & Adaptation page. To learn more about climate change impacts on human health, visit the Health Impacts & Adaptation page.
Extinction Risks
Climate change, along with habitat destruction and pollution, is one of the important stressors that can contribute to species extinction. The IPCC estimates that 20-30% of the plant and animal species evaluated so far in climate change studies are at risk of extinction if temperatures reach levels projected to occur by the end of this century. [1] Projected rates of species extinctions are 10 times greater than recently observed global average rates and 10,000 times greater than rates observed in the distant past (as recorded in fossils). [2] Examples of species that are particularly climate sensitive and could be at risk of significant losses include animals that are adapted to mountain environments, such as the pika, animals that are dependent on sea ice habitats, such as ringed seals, and cold-water fish, such as salmon in the Pacific Northwest. [5]
For information about how communities are adapting to the impacts of climate change on ecosystems, visit the Ecosystems Adaptation section.
References
1. Fischlin, A., G.F. Midgley, J.T. Price, R. Leemans, B. Gopal, C. Turley, M.D.A. Rounsevell, O.P. Dube, J. Tarazona, A.A. Velichko (2007). Ecosystems, their Properties, Goods, and Services. In: Climate Change 2007: Impacts, Adaptation and Vulnerability . Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Parry, M.L., O.F. Canziani, J.P. Palutikof, P.J. van der Linden, and C.E. Hanson (eds.). Cambridge University Press, Cambridge, United Kingdom.
2. Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-Being: Biodiversity Synthesis (PDF). World Resources Institute, Washington, DC, USA.
3. CCSP (2009). Thresholds of Climate Change in Ecosystems . A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Fagre, D.B., Charles, C.W., Allen, C.D., Birkeland, C., Chapin, F.S. III, Groffman, P.M., Guntenspergen, G.R., Knapp, A.K., McGuire, A.D., Mulholland, P.J., Peters, D.P.C., Roby, D.D., and Sugihara, G. U.S. Geological Survey, Department of the Interior, Washington DC, USA.
4. CCSP (2008). The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity in the United States . A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Backlund, P., A. Janetos, D. Schimel, J. Hatfield, K. Boote, P. Fay, L. Hahn, C. Izaurralde, B.A. Kimball, T. Mader, J. Morgan, D. Ort, W. Polley, A. Thomson, D. Wolfe, M. Ryan, S. Archer, R. Birdsey, C. Dahm, L. Heath, J. Hicke, D. Hollinger, T. Huxman, G. Okin, R. Oren, J. Randerson, W. Schlesinger, D. Lettenmaier, D. Major, L. Poff, S. Running, L. Hansen, D. Inouye, B.P. Kelly, L Meyerson, B. Peterson, and R. Shaw. U.S. Environmental Protection Agency, Washington, DC, USA.
5. USGCRP (2009). Global Climate Change Impacts in the United States . Karl, T.R., J.M. Melillo, and T.C. Peterson (eds.). United States Global Change Research Program. Cambridge University Press, New York, NY, USA.
6. ACIA (2004). Impacts of a Warming Arctic: Arctic Climate Impact Assessment . Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, United Kingdom.
7. NRC (2008). Understanding and Responding to Climate Change: Highlights of National Academies Reports . National Research Council. The National Academies Press, Washington, DC, USA.
8. NRC (2008). Ecological Impacts of Climate Change . National Research Council. The National Academy Press, Washington, DC, USA.
Northwest Oyster Die-offs Show Ocean Acidification Has Arrived
BY ELIZABETH GROSSMAN
The acidification of the world’s oceans from an excess of CO2 has already begun, as evidenced recently by the widespread mortality of oyster larvae in the Pacific Northwest. Scientists say this is just a harbinger of things to come if greenhouse gas emissions continue to soar.
Standing on the shores of Netarts Bay in Oregon on a sunny fall morning, it’s hard to imagine that the fate of the oysters being raised here at the Whiskey Creek Shellfish Hatchery is being determined by what came out of smokestacks and tailpipes in the 1960s and ‘70s. But this rural coastal spot and the shellfish it has nurtured for centuries are a bellwether of one of the most palpable changes being caused by global carbon dioxide emissions — ocean acidification.
It was here, from 2006 to 2008, that oyster larvae began dying dramatically, with hatchery owners Mark Wiegardt and his wife, Sue Cudd, experiencing larvae losses of 70 to 80 percent. “Historically we’ve had larvae mortalities,” says Wiegardt, but those deaths were usually related to bacteria. After spending thousands of dollars to disinfect and filter out pathogens, the hatchery’s oyster larvae were still dying.
Finally, the couple enlisted the help of Burke Hales, a biogeochemist and ocean ecologist at Oregon State University. He soon homed in on the carbon chemistry of the water. “My wife sent a few samples in and Hales said someone had screwed up the samples because the [dissolved CO2 gas] level was so ridiculously high,” says Wiegardt, a fourth-generation oyster farmer. But the measurements were accurate. What the Whiskey Creek hatchery was experiencing was acidic seawater, caused by the ocean absorbing excessive amounts of CO2 from the air.
Ocean acidification — which makes it difficult for shellfish, corals, sea urchins, and other creatures to form the shells or calcium-based structures they need to live — was supposed to be a problem of the future. But because of patterns of ocean circulation, Pacific Northwest shellfish are already on the front lines of these potentially devastating changes in ocean chemistry. Colder, more acidic waters are welling up from the depths of the Pacific Ocean and streaming ashore in the fjords, bays, and estuaries of Oregon, Washington, and British Columbia, exacting an environmental and economic toll on the region’s famed oysters.
For the past six years, wild oysters in Willapa Bay, Washington, have failed to reproduce successfully because corrosive waters have prevented oyster larvae from forming shells. Wild oysters in Puget Sound and off the east coast of Vancouver Island also have experienced reproductive failure because of acidic waters. Other wild oyster beds in the Pacific Northwest have sustained losses in recent years at the same time that scientists have been measuring alarmingly corrosive water along the Pacific coast.
The region’s thriving oyster hatcheries have had to scramble to adapt to these increases in acidity, which pose a threat to their very existence. Some of the largest operations, such as Whiskey Creek, are buffering the water in which they grow their larvae, essentially giving their tanks a dose of antacid in the form of sodium bicarbonate.
While the operation may look modest — a handful of small buildings just yards from the shore of a wide bay — Whiskey Creek is one of the largest suppliers of oyster seed on the West Coast. Its baby oysters are grown all along the U.S. Pacific coast, where the oyster industry is currently valued at about $73 million annually. Washington’s Taylor Shellfish Hatchery — the country’s largest producer of farmed shellfish and one of the largest oyster producers — has also experienced dramatic losses. Its hatchery on Hood Canal, which has had some of the Pacific Northwest’s highest levels of ocean acidification, experienced the loss of about three-quarters of its oyster larvae before the owners began buffering the high acidity.
Together, Whiskey Creek and Taylor Shellfish, which also raises clams and mussels, account for most of the West Coast’s commercial shellfish production. Oysters are the biggest product, making up more than 80 percent of the Pacific coast shellfish produced and more than 60 percent of the revenue. According to industry and federal officials, the West Coast oyster industry generates about 3,000 jobs and has a total annual economic impact of about $207 million — significant numbers for their coastal communities.
The situation at the hatcheries has improved substantially in the past couple of years, thanks largely to an ongoing, intensive scientific monitoring effort and to measures to control the pH of seawater in the tanks where oyster larvae are raised. But ocean acidification continues apace, which makes understanding what’s been happening to Whiskey Creek oysters vital to grasping what will eventually threaten every ocean organism that builds a shell or coral branch.
Because of the way seawater circulates around the world, the deep water now washing ashore in Oregon and Washington is actually 30 to 50 years old and absorbed its CO2 long before the fall of the Berlin Wall. This time lag is important because oceans absorb about 50 percent of the CO2 released by burning fossil fuels, emissions that have been rising dramatically in recent decades. According to the National Oceanic and Atmospheric Administration (NOAA) ocean acidity has increased approximately 30 percent since the Industrial Revolution, and if we continue our current rate of carbon emissions, global oceans could be 150 percent more acidic by the end of the century than they have been for 20 million years.
“This problem is real,” says Hales. “There are measurable human impacts.”
Once absorbed by seawater, CO2 undergoes chemical reactions that make the water more acidic, says Richard Feely, a senior scientist at NOAA’s Pacific Marine Environmental Laboratory and an expert in the ocean’s carbon chemistry. The chemical reactions that lower the ocean’s pH also reduce the availability of the kind of calcium carbonate that a variety of sea creatures need to build shells. On a 2007 research cruise along the Pacific Coast from British Columbia to Baja California, Feely discovered that “corrosive waters were everywhere we looked.”
When seasonal wind patterns change in spring, north winds create upwellings of deep and more acidic seawater off the Pacific Northwest coast. These waters — with their lowered pH and lack of available calcium carbonate in the form of what’s called aragonite — are what have been killing the oyster larvae. The availability of aragonite is particularly vital at an oyster’s earliest stages of development. In the first 24 to 48 hours of an oyster’s life, as it forms its first shell, the larvae go from being almost 0 percent shell to at least 70 percent shell before they begin to grow more tissue, explains George Waldbusser, assistant professor of ocean ecology and biochemistry at Oregon State University’s College of Oceanic and Atmospheric Sciences. Lower aragonite saturation means the tiny larvae — much smaller than a poppy seed — need to expend more energy to make their shells.
“If too much energy is used at one stage, they may not be able to survive to a subsequent stage or overcome the stress,” says Waldbusser.
Acidic water sometimes kills oyster larvae outright, so that they fail to survive past the egg stage. At other times, the eggs hatch, but larvae fail after a week or two.
“A lot is happening to an egg in the first 24 hours,” says Benoit Eudeline, chief scientist at the Taylor Shellfish Hatchery. “It goes from what’s essentially a blob to a creature with a shell, a digestive tract, organs. The oyster has to use a lot of aragonite to make its early shell and there seems to be a strong correlation between aragonite saturation and survival of larvae at a later stage.”
Waldbusser and colleagues are now researching the impacts of the stress induced by low aragonite saturation — how it may be affecting the oyster larvae’s use of its food reserves, and how it may impact development. “At this stage they’re floating around and eating as much as they can,” explains Christopher Sabine, director of NOAA’s Pacific Marine Environmental Laboratory. “Anything that’s going to take energy away from shell-building is going to cost them.”
In response to the devastating die-off of larvae from 2006 to 2008 — and with the help of Hales, Waldbusser, and other scientists — Whiskey Creek and Taylor Shellfish began a program of ongoing monitoring to help avoid the intake of acidic water. Particularly at Netarts Bay, where the deep ocean water is on shore in early morning, they discovered they could improve pH conditions by varying the time of day they took water into their tanks. A better, less acidic time to pull in water is later in the day, after growth of phytoplankton has been stimulated by sunlight, thus soaking up some of the excess CO2. Buffering the acid also was crucial. A half-million dollars in federal funds has helped cover the expensive work of monitoring and controlling the seawater chemistry.
At the Taylor Shellfish Hatchery, where water takes much longer than it does at Netarts to move in and out of the bay, organic matter — dead algae for example — can build up, die, and become food for bacteria that use up oxygen and further increase CO2 concentrations. This underscores the fact that controlling the flow of excess nutrients into the ocean, such as fertilizers and sewage, can to some degree offset the impacts of growing acidity.
A 2010 study said the seas are acidifying ten times faster today than 55 million years ago when a mass extinction of marine species occurred. And, science writer Carl Zimmer reported, current changes in ocean chemistry may portend a new wave of die-offs.
Feely said problems with ocean acidification are also starting to be seen on the U.S.’s Atlantic coast and in Australia. Agricultural runoff and sewage have been taking a toll on the once-thriving oyster business in the Chesapeake Bay, and now rising ocean acidity is further exacerbating the problems of CO2-laden waters there. But for shellfish growers in the Pacific Northwest, these impacts are already too clear. As Bill Dewey of Taylor Shellfish put it, Pacific Northwest oysters may be “the canary in the coal mine.”
Yet on a November morning, with the snow-capped peaks of the Olympic Mountains just visible through the fog, the landscape around Taylor Shellfish looks much as it always has: the sea, the mountains, and a shore lined with fir trees. But as Dewey understands, the green-gray water is changing in a way it hasn’t for eons — changes that will be with us well into the next century, and possibly longer.
“We have to find a way in our industry to adapt,” says Dewey.
Marine food chains at risk of collapse, extensive study of world's oceans finds
Source: http://www.theguardian.com/environment/2015/oct/13/marine-food-chains-at-risk-of-collapse-extensive-study-of-worlds-oceans-reveals
The food chains of the world’s oceans are at risk of collapse due to the release of greenhouse gases, overfishing and localised pollution, a stark new analysis shows.
A study of 632 published experiments of the world’s oceans, from tropical to arctic waters, spanning coral reefs and the open seas, found that climate change is whittling away the diversity and abundance of marine species.
The paper, published in the Proceedings of the National Academy of Sciences, found there was “limited scope” for animals to deal with warming waters and acidification, with very few species escaping the negative impact of increasing carbon dioxide dissolution in the oceans.
The world’s oceans absorb about a third of all the carbon dioxide emitted by the burning of fossil fuels. The ocean has warmed by about 1C since pre-industrial times, and the water increased to be 30% more acidic.
The acidification of the ocean, where the pH of water drops as it absorbs carbon dioxide, will make it hard for creatures such as coral, oysters and mussels to form the shells and structures that sustain them. Meanwhile, warming waters are changing the behaviour and habitat range of fish.
The overarching analysis of these changes, led by the University of Adelaide, found that the amount of plankton will increase with warming water but this abundance of food will not translate to improved results higher up the food chain.
“There is more food for small herbivores, such as fish, sea snails and shrimps, but because the warming has driven up metabolism rates the growth rate of these animals is decreasing,” said associate professor Ivan Nagelkerken of Adelaide University. “As there is less prey available, that means fewer opportunities for carnivores. There’s a cascading effect up the food chain.
“Overall, we found there’s a decrease in species diversity and abundance irrespective of what ecosystem we are looking at. These are broad scale impacts, made worse when you combine the effect of warming with acidification.
“We are seeing an increase in hypoxia, which decreases the oxygen content in water, and also added stressors such as overfishing and direct pollution. These added pressures are taking away the opportunity for species to adapt to climate change.”
The research adds to recent warnings over the state of the oceans, with the world experiencing the third global bleaching of coral reefs.
Since 2014, a massive underwater heatwave, driven by climate change, has caused corals to lose their brilliance and die in every ocean. By the end of this year 38% of the world’s reefs will have been affected. About 5% will have died.
Coral reefs make up just 0.1% of the ocean’s floor but nurture 25% of the world’s marine species. There are concerns that ecosystems such as Australia’s Great Barrier Reef, which has lost half its coral cover over the past 30 years, could be massively diminished by 2050 unless greenhouse gas emissions are slashed and localised pollution is curbed.
Meanwhile, warming of the oceans is causing water to thermally expand, fuelling sea level rises caused by melting land ice. Research released in the US on Monday found that Antarctic ice is melting so fast that the whole continent could be at risk by 2100, with severe consequences for coastal communities.
Problems in the ocean’s food chains will be a direct concern for hundreds of millions of people who rely upon seafood for sustenance, medicines and income. The loss of coral reefs could also worsen coastal erosion due to their role in protecting shorelines from storms and cyclones.
“These effects are happening now and will only be exacerbated in the next 50 to 100 years,” Nagelkerken said. “We are already seeing strange things such as the invasion of tropical species into temperate waters off south-eastern Australia. But if we reduce additional stressors such as overfishing and pollution, we can give species a better chance to adapt to climate change.”
US forests struggle as drought and climate change bite
The speed at which the climate is changing is outstripping forests’ ability to adapt to drier, hotter conditions across vast swathes of the US and Canada
Yosemite national park in California is one of many in the region afflicted by drought – water levels in the Merced River are up to 4 feet lower than usual (Pic: Pixabay)
By Tim Radford
Drought and climate change are now threatening almost all the forests of the continental US, according to new research.
Scientists from 14 laboratories and institutions warn in the journal Global Change Biology that climate is changing faster than tree populations can adapt
Existing forests, effectively and literally rooted to the spot, are experiencing conditions hotter and less reliably rainy than those in which they had evolved.
“Over the last two decades, warming temperatures and variable precipitation have increased the severity of forest droughts across much of the continental United States,” says James Clark, professor of global environmental change at Duke University, North Carolina.
He and colleagues synthesised hundreds of studies to arrive at a snapshot of changing conditions and a prediction of troubles ahead.
Ominous predictions
Other research has already delivered ominous predictions for the forests of the US southwest, but the scientists warn that other, normally leafier parts of the continent face increasing stress. Dieback, bark beetle infestation and wildfire risk may no longer be confined to the western uplands.
“While eastern forests have not experienced the types of changes seen in western forests in recent decades, they too are vulnerable to drought and could experience significant changes with increased severity, frequency, or duration in drought,” the authors say.
Professor Clark puts it more bluntly: “Our analysis shows virtually all US forests are now experiencing change and are vulnerable to future declines.
Given the uncertainty in our understanding of how forest species and stands adapt to rapid change, it’s going to be difficult to anticipate the type of forests that will be here in 20 to 40 years.”
Quite what happens depends on the speed at which nations switch from fossil fuels – which release the greenhouse gases that drive global warming – to renewable energy. But because carbon dioxide levels in the atmosphere have risen sharply in the last century, some degree of change is inevitable.
“This is like climate change on steroids, and it happens over much more rapid timescales”
A team of researchers from the University of Colorado Boulder took a closer look at how hotter and drier conditions affect forests. They report in Ecology Letters that felling and forest clearance seem to make things worse, as the newly-exposed edges of an existing forest become more susceptible to drastic temperature changes.
“When you chop down trees, you create hotspots in the landscape that are just scorched by the sun. These hotspots can change the way that heat moves through a landscape,” says the report’s lead author, Kika Tuff, a PhD student at the university’s department of ecology and evolutionary biology.
Low air pressure in the cleared spots pulls the cool moist air from the shade of the trees, to be replaced by hot, dry air. The cleared areas then get the rainfall, while the nearby forest dries.
The warming effect is most pronounced within between 20 and 100 metres of the forest’s edge, where temperatures can be as much as 8°C higher than deep in the forest interior.
Since 20% of the world’s remaining forests lie within 100 metres of an edge, and more than 70% lie within a kilometre of an edge, the discovery suggests that thewarming effect could be happening anywhere, or everywhere.
Tuff says: “This is like climate change on steroids, and it happens over much more rapid timescales.”
Millennium of growth
Meanwhile, to look more closely at the stresses that forests are now facing, two researchers at Washington State University in Vancouver report in the Royal Society Open Science journal that they have made a mathematical model of a forest, enabling them to replicate a millennium of growth and change in about three weeks.
They say they have already used the model to predict increasing fire rates in the hardwood forests of Quebec, because of rising carbon dioxide levels and warmer temperatures.
The model is based on data collected by drone surveys, and it is, they say, the only simulation that creates intricate root systems and canopy structures for each tree. The idea is to provide a tool that can help foresters plan for change.
“One of the major concerns is how climatic changes, in particular droughts, can affect forest structure and dynamics,” they write.
“Drive an hour east along the Columbia River from Vancouver and you will notice a complete transition from very dense forests to savanna and then to desert,” says Nikolay Strigul, assistant professor of mathematics and statistics at Washington State.
“The fear is that drier conditions in the future will prevent forests in places like Washington from re-establishing themselves after a clear-cut or wildfire. This could lead to increasing amounts of once-forested areas converted to desert.”
This article was produced by the Climate News Network
Principle 8h
Climate change is altering the timing of natural events
Timing matters: Flowers bloom, insects emerge, birds migrate, and planting and hunting seasons are carefully coordinated times in order to take advantage of what other organisms, or the weather, is up to.
But increasing research is showing some of these relationships are falling out of sync as climate change alters important cues, such as the arrival of spring warmth.
"There are going to be winners and losers," said David Inouye, a biology professor at the University of Maryland, Read more…
Climate change is altering the timing of natural events
Timing matters: Flowers bloom, insects emerge, birds migrate, and planting and hunting seasons are carefully coordinated times in order to take advantage of what other organisms, or the weather, is up to.
But increasing research is showing some of these relationships are falling out of sync as climate change alters important cues, such as the arrival of spring warmth.
"There are going to be winners and losers," said David Inouye, a biology professor at the University of Maryland, who has followed seasonal events at the Rocky Mountain Biological Laboratory in Colorado since 1973. "The ultimate outcome will be that some species go extinct and some manage to adapt."
This isn't just a problem for the natural world. Shifts in seasonal events can have direct implications for humans, "because we, as human societies, are adapted to certain seasonal conditions," said Shannon McNeeley, a postdoctoral researcher at the National Center for Atmospheric Research (NCAR) who has studied how a mismatch is playing out in Alaska. There, changes in the moose migrations have made it difficult for native people to obtain the meat they need during the legal hunting season.
Source: http://www.livescience.com/19679-climate-change-seasons-shift-mismatch.html
Featured Interview
For a good summary of impacts on seasonal patterns of plants and animals, visit the National Climate Assessment:
For a brief account of how climate change is affecting hummingbirds and their nectar sources, read this article from Audubon:
Are Early Blooms Putting Hummingbirds At Risk?
Audubon’s chief scientist talks migration, climate change, and what you can do to help.
Jesse Greenspan
Published Apr 07, 2015
No one understands the relationship between climate change and hummingbirds better than Audubon’s chief scientist Gary Langham. He led a groundbreaking study in 2014 that determined that about half of all North American bird species will lose their homes if we don’t do something to stop global warming. Now, to further that study, Audubon is sourcing data from people across the country who host hummingbirds in their backyards. The project, called Hummingbirds at Home, starts up again on April 8.
Langham emphasized the importance of Hummingbirds at Home to Audubon while answering questions about what will happen to the 18 or so hummingbird species in the United States (including rare visitors from Mexico) and the role citizen scientists play in ensuring their survival.
What were some of the regular challenges of a hummingbird migration even before climate change became a factor?
Well, any kind of migration, let alone a hummingbird, is sort of a minor miracle. Imagine a Ruby-throated Hummingbird crossing the Gulf of Mexico in one flight. How in the world does it have enough energy stored up in that little body? It’s just amazing. And then you factor in all of the threats it has to encounter, from weather to manmade structures.
So how has climate change made it worse?
If the nectar sources you depend on bloom too early, you run the risk of showing up after the party’s already over. That’s one of the things that got us thinking about Hummingbirds at Home. The Broad-tailed Hummingbird’s primary food source right now is this big yellow flower called the glacier lily. There’s research out of the University of Maryland showing that the bird is still arriving at its breeding grounds in the Rockies at the same time as previous years, but that climate change is causing the glacier lily to open up earlier and earlier in the season. It’s not hard to extrapolate that soon, Broad-tailed Hummingbirds may show up and not have their main food source. Maybe new flowers will take the glacier lily’s place. Or maybe this shift will turn out to be really bad for the bird.
Are some hummingbirds more endangered by climate change than others?
The hummingbird I grew up with in California, the Anna’s Hummingbird, was mercifully on the climate stable list (in the Audubon Birds and Climate Change Report). But unfortunately, one of the other coastal California hummingbirds, the Allen’s, is listed as climate-endangered. Its summer range seems to be decreasing, whereas the winter range is shifting northward pretty dramatically. The Rufous is also listed as climate-endangered. In some ways, it might be affected even more dramatically than the Allen’s. The other two species listed as climate-threatened are the Calliope and Black-chinned Hummingbirds.
So the Broad-tailed isn’t one of them?
While the Broad-tailed Hummingbird, in the way we did the climate report, was shown to be stable, its food sources are not. The food sources and a lot of ancillary things that are really important to animals are actually not included in our report. And that makes the prospects even more dire than what we projected.
How will Hummingbirds at Home help these species?
If we can better understand what the hummingbirds are feeding on, we can maybe get ahead of the curb and plant things that are either climate-stable or that will properly match up with the birds’ migrations. To me, the next iteration is to generate a specific list of plants that people can use for hummingbirds in their areas.
In the three years since Hummingbirds at Home started, what has stood out to you about the project?
People are very passionate about their backyards and gardens, and they’re very passionate about hummingbirds. Hummingbirds are like raptors. They somehow have this supernatural ability to capture people’s attention. Because hummingbirds come in people’s yards, they’re also a great way to engage kids. One of the things that’s kind of lost in our digital world is that connection to nature.
Is the eventual goal to have something as long-running and as scientifically useful as, say, the Breeding Bird Survey or the Christmas Bird Count?
I think that would be great! I hesitate to forecast anything for an individual project, but I could imagine that it would do just that. Or maybe we’ll broaden it to be more inclusive of a broader range of birds, or maybe it will be absorbed by something else. We want whatever it is we’re doing to feel meaningful to people and be fun and free and family-friendly.
Climate Impacts on Wildlife
Jessica Aldred
Monday 31 March 2014 07.31 EDT
Source: http://www.theguardian.com/environment/2014/mar/31/ipcc-climate-report-wildlife-impact
Polar bears are seen south of Churchill, Manitoba, in this undated handout photo. Lightning-sparked wildfires along Canada's Hudson Bay are threatening polar bears' summer habitat, encroaching on the old tree roots and frozen soil where females make their dens, an conservation expert on the big white bears said on Thursday. Photograph: Reuters
One focus of the latest report from the UN panel on climate change is the impact on Earth's ecosystems. The report from the Intergovernmental Panel on Climate Change (IPCC) says that in recent decades, many plant and animal species have moved their range, changed numbers or shifted their seasonal activities as a result of warmer temperatures.
Moving on up
Species are matching temperature rises by increasingly shifting their range (the geographic area to which their activity is confined) towards the cooler poles or higher altitudes – sometimes three times faster than previously thought. Species that already inhabit the upper limit of their habitat – such as the polar bear, snow leopard or dotterel – literally have nowhere left to go.
The British comma butterfly has moved 137 miles northward in the past two decades, while geometrid moths on Mount Kinabalu in Borneo have shifted uphill by 59 metres in 42 years. The quiver tree of southern Africa is increasing as it moves towards the south pole, but dying of heat and water stress in its shrinking northern range. Dartford warblers have been steadily moving northwards in the UK while declining on the southern edge of their range in Spain.
A comma butterfly in Kent, UK. Photograph: Robert Pickett/Alamy
In the seas, rising numbers of warm-water crustaceans have been found around Norway's polar islands, while the snow crab has extended its range northwards by up to 311 miles. The IPCC report warns that many species will be unable to move fast enough to track suitable climates, with plants, amphibians and small mammals in flat landscapes or that remain close to their breeding site particularly vulnerable.
Seasonal shift
For many species, climate influences important stages in their annual life cycle, like migration or mating. The report shows major shifts in this "phenology" in recent decades, mainly in the northern hemisphere. "Spring advancement" – the earlier occurrence of breeding, bud burst, breaking hibernation, flowering and migration – has been found in hundreds of plant and animal species in many regions. Migratory birds including the whitethroat, reed warbler and song thrush are arriving earlier, three species of Japanese amphibians have been found to be breeding earlier, while the edible dormouse has been emerging earlier from hibernation by an average of eight days per decade.
Climate change is disrupting flower pollination, research shows
Damian Carrington
Thursday 6 November 2014 12.00 EST
Source: http://www.theguardian.com/environment/2014/nov/06/climate-change-is-disrupting-flower-pollination-research-shows
New research reveals that rising temperatures are causing bees to fly before flowers have bloomed, making pollination less likely
The early spider orchid and miner bee, that depend on each other for reproduction, have become increasingly out of sync as spring temperatures rise, research has shown. Photograph: Friedhelm Adam/Getty Images
Sexual deceit, pressed flowers and Victorian bee collectors are combined in new scientific research which demonstrates for the first time that climate change threatens flower pollination, which underpins much of the world’s food production.
The work used museum records stretching back to 1848 to show that the early spider orchid and the miner bee on which it depends for reproduction have become increasingly out of sync as spring temperatures rise due to global warming.
The orchid resembles a female miner bee and exudes the same sex pheromone to seduce the male bee into “pseudocopulation” with the flower, an act which also achieves pollination. The orchids have evolved to flower at the same time as the bee emerges.
But while rising temperatures cause both the orchid and the bee to flower or fly earlier in the spring, the bees are affected much more, which leads to a mismatch.
“We have shown that plants and their pollinators show different responses to climate change and that warming will widen the timeline between bees and flowers emerging,” said Dr Karen Robbirt, at the Royal Botanic Gardens, Kew and the University of East Anglia (UEA). “If replicated in less specific systems, this could have severe implications for crop productivity.”
She said the research, published in Current Biology on Thursday, is “the first clear example, supported by long-term data, of the potential for climate change to disrupt critical [pollination] relationships between species.”
Three-quarters of all food crops rely on pollination, and bees and other pollinators have already suffered heavily in recent decades from disease, pesticide use and the widespread loss of the flowery habitats on which they feed. In the UK alone, the free fertilisation provided by pollinators is estimated to be worth £430m a year to farmers.
Professor Anthony Davy, also at UEA and part of the research team, said: “There will be progressive disruption of pollination systems with climatic warming, which could lead to the breakdown of co-evolved interactions between species.”
Scientists have already identified a few timing mismatches caused by global warming between species and their prey. Oak tree buds are eaten by winter moths, whose caterpillars are in turn fed by great tits to their chicks, but the synchronicity of all these events has been disrupted.
Suspected mismatches have occurred between sea birds and fish, such as puffins and herring and guillemots and sand eels. The red admiral butterfly and the stinging nettle, one of its host plants, are also getting out of sync.
The new study focused on the early spider orchid Ophrys sphegodes, found in southern England, and the solitary miner bee species Andrena nigroaenea because they have a very close relationship. Other plants can be pollinated by many insects and other insects can pollinate many plants, making it very hard to determine the effect of changing temperatures.
The solitary miner bee is affected more by rising temperatures than the early spider orchid that it pollinates. Photograph: Oxford University
Another challenge is that the temperature effects can be subtle, meaning data has to be collected over a long period. Robbirt and her colleagues realised that the natural history museums in London and Oxford and Kew Gardens had dated specimens of both the orchid and the bee stretching back to 1848.
Analysing all the data, and checking it against recent surveys, revealed that the orchid flowers six days earlier for every 1C increase in spring temperatures. But the effect on the male miner bee was greater, as it emerged nine days earlier.
The female miner bees, which usually emerge later than the male, emerged 15 days earlier. The latter effect meant the male bees were less likely to visit the orchid flowers for pseudocopulation. “The orchids are likely to be outcompeted by the real thing,” said Robbirt.
The UK government published its national pollinator strategy on Tuesday. It was welcomed by the pesticide trade body, the Crop Protection Association and the National Farmers Union. But Joan Walley MP, chair of parliament’s Environmental Audit Committee, said: “I am disappointed the government seems stubbornly determined to keep open the possibility of challenging the EU ban on neonicotinoid pesticides, which have been linked to pollinator declines.”
Climate Change Throws Nature's Timing Out of Whack
by Wynne Parry
Timing matters: Flowers bloom, insects emerge, birds migrate, and planting and hunting seasons are carefully coordinated times in order to take advantage of what other organisms, or the weather, is up to.
But increasing research is showing some of these relationships are falling out of sync as climate change alters important cues, such as the arrival of spring warmth.
"There are going to be winners and losers," said David Inouye, a biology professor at the University of Maryland, who has followed seasonal events at the Rocky Mountain Biological Laboratory in Colorado since 1973. "The ultimate outcome will be that some species go extinct and some manage to adapt."
This isn't just a problem for the natural world. Shifts in seasonal events can have direct implications for humans, "because we, as human societies, are adapted to certain seasonal conditions," said Shannon McNeeley, a postdoctoral researcher at the National Center for Atmospheric Research (NCAR) who has studied how a mismatch is playing out in Alaska. There, changes in the moose migrations have made it difficult for native people to obtain the meat they need during the legal hunting season.
"This more subtle seasonal change has not been a main focus of climate research," McNeeley said. "I think it is going to be one that emerges more and more as we see these changes happening, and we start to have more conflicts around this."
Changes in nature
Evidence going back decades and sometimes even longer shows the timing of some biological events is shifting around the world. Studies document the progressively earlier arrival of spring, by about 2.3 to 5.2 days per decade in the last 30 years, according to the Intergovernmental Panel on Climate Change's 2007 report. That report lists studies showing changes in seasonal timing, or phenology, of the first and last leaves on gingko trees in Japan, butterfly emergence in the United Kingdom, bird migrations in Australia, the first leaves and flowers of lilacs in North America, among many others.
But not everything is changing together, leading to complex results.
During his years in the Colorado mountains, Inouye has seen the winter snow melt earlier, the result of warmer springs, less snowfall during the winter and more dust carried in by storms, which accelerates melting. The last frost, however, continues to happen at about the same time.
His work indicates this is bad for the Mormon fritillary butterfly since an early start to the growing season may put caterpillars and the flower buds that could later feed adult butterflies at the mercy of frosts. Migratory hummingbirds, which also consume the flowers' nectar, are arriving earlier in the spring now, but they aren't quite keeping pace with the first flowers, a potential mismatch that could ultimately lead to fewer flowers for the birds to pollinate, said Inouye.
Decades of data show that robins are showing up earlier, as are the hibernating marmots, and there is evidence that this shift is benefiting the marmots, who appear to be putting on more weight during the summer.
Records of spring flowers in Concord, Mass., initially kept by Henry David Thoreau, show that not only are flowers blooming earlier, the species that haven't moved up their first bloom dates are disappearing.
Human implications
Even in modern society, human activities track the seasons. In search of shifts in human phenology, one study looked at national park attendance, and found a shift toward peak attendance earlier in the year for parks located in places where spring is getting warmer.
The effects of climate change are showing up dramatically in the Arctic, and changes in the timing of seasonal events are no exception, McNeeley said. "You are starting to see these seasonality mismatches in a much more enhanced way than you are in the lower 48 [U.S. states]," she said.
These changes are pushing nature and human regulatory systems apart, creating problems for Alaskan natives who depend on wild food, particularly moose, but can only legally hunt it during a specific period. The hunting season, historically, has been timed to the moose migration out of their summer feeding grounds into the territory where they perform their annual mating ritual. But lately the moose have been staying at their feeding grounds until later into the season.
"People haven't had time to harvest moose for winter and then the hunting season shuts down," McNeeley said. "That gives them two choices, either they go without moose … or they have to hunt illegally, which comes with huge penalties if they get caught."
Over the past decade, tribes have sought to shift the hunting season, but their efforts have been almost completely unsuccessful, due largely to biologists' concerns about the effects on the breeding season, she said.
In the lower 48 states, earlier snowmelt and a longer growing season are likely to create conflicts related to water rights, but updating policies will likely be difficult. The fundamental problem is the scarcity of the resource, Douglas Kenney, director of the Western Water Policy Program at the University of Colorado, told AtmosNews, an online publication of NCAR.
"This particular issue of the timing of seasons and phenology and the legal system is something that has been really understudied and I think needs to receive a lot more attention," McNeeley told LiveScience.
Principle 8i
Human Health and Mortality will be Affected
Human health and mortality rates will be affected to different degrees in specific regions of the world as a result of climate change. Although cold-related deaths are predicted to decrease, other risks are predicted to rise. The incidence and geographical range of climate-sensitive infectious diseases—such as malaria, dengue fever, and tick-borne diseases—will increase. Drought-reduced crop yields, degraded air and water quality, and increased hazards in coastal and low-lying areas will contribute to unhealthy conditions, particularly for the most vulnerable populations.
The wide range of climate-related challenges facing every community are enormous and may appear at times to be overwhelming. The U.S. and other militaries around the world recognize climate change as a serious, potentially catastrophic national and global security threat. Read More…
Human Health and Mortality will be Affected
Human health and mortality rates will be affected to different degrees in specific regions of the world as a result of climate change. Although cold-related deaths are predicted to decrease, other risks are predicted to rise. The incidence and geographical range of climate-sensitive infectious diseases—such as malaria, dengue fever, and tick-borne diseases—will increase. Drought-reduced crop yields, degraded air and water quality, and increased hazards in coastal and low-lying areas will contribute to unhealthy conditions, particularly for the most vulnerable populations.
The wide range of climate-related challenges facing every community are enormous and may appear at times to be overwhelming. The U.S. and other militaries around the world recognize climate change as a serious, potentially catastrophic national and global security threat.
Being aware of the complex, diverse issues is the first step toward building robust, resilient communities and protecting ecosystems. Recently, the Preventive Medicine community, which has years of communicating “bad news” about health and environmental risks to relevant organizations and agencies, began to tackle the health impacts of climate change with a special issue of the American Journal of Preventive Medicine. One article is titled “Community-Based Adaptation to the Health Impacts of Climate Change” by Kristie Ebi and Jan Semenza. Their abstract reads:
“The effects of and responses to the health impacts of climate change will affect individuals, communities, and societies. Effectively preparing for and responding to current and projected climate change requires ongoing assessment and action, not a one-time assessment of risks and interventions. To promote resilience to climate change and other community stressors, a stepwise course of action is proposed for community-based adaptation that engages stakeholders in a proactive problem solving process to enhance social capital across local and national levels. In addition to grassroots actions undertaken at the community level, reducing vulnerability to current and projected climate change will require top-down interventions implemented by public health organizations and agencies.”
Climate Change and Health Issues in the Pacific Northwest
Human Health
Impacts and Adaptation
Source: http://cses.washington.edu/db/pdf/daltonetal678.pdf
Key elements of projected future climate change in the Northwest include increasing year-round temperatures and rising sea level, changes in precipitation that include decreases in summer and increases during the other seasons, and increases in some kinds of extreme weather events. These changes will significantly affect natural and managed ecosystems and built environments in the Northwest, which in turn will have significant impacts on human health.
While some health outcomes associated with climate change are relatively direct (e.g., exposure to extreme heat), others are more complicated and involve multiple pathways. Incidents of extreme weather (e.g., floods, droughts, severe storms, heat waves, and wildfires) can directly affect human health and cause serious environmental and economic impacts. Indirect impacts can occur when climate change alters or disrupts natural and social systems. This can give rise to the spread or emergence of vector-, water-, and food-borne diseases in areas where they either have not existed, or where their presence may have been limited. Respiratory conditions would be exacerbated by exposures to smoke from increased wildfires. Air pollution and increases in pollen counts (and a prolonged pollen-producing season) would increase cases of allergies, asthma, and other respiratory conditions among susceptible people. Climate change can also impact mental health directly (e.g., acute or traumatic effects of extreme weather events), indirectly (e.g., threats to emotional well-being based on observation of impacts of climate change), and psychosocially (e.g., large-scale social and community effects of climate change).
Harmful algal blooms (HABs) occur when certain types of microscopic algae grow quickly in water, forming visible patches that may harm the health of the environment, plants, or animals. HABs can deplete the oxygen and block the sunlight that other organisms need to live. The natural toxins produced by some harmful algae can become concentrated in some filter-feeding shell fish which, when eaten by humans, can cause illness or death. HABs can occur in marine, estuarine, and fresh waters and can impair drinking and recreational waters. On the US West Coast, the main toxin-producing algal species are dinoflagellates in the genus Alexandrium that cause paralytic shell fish poisoning and diatoms in the genus Pseudonitzschia that produce domoic acid and cause domoic acid poisoning.
HABs appear to be increasing in frequency, intensity, and duration in all aquatic environments on a global scale, including along the coastlines and in the surface waters of the United States and may be partially due to climate change though the association remains poorly understood. Few studies have examined the association between climate change and HABs due to difficulty in separating the influence of climate variability and change from other known HAB contributing factors like eutrophication. Regardless, since many HAB species are currently limited by cold temperatures, warmer conditions in the future may lead to more outbreaks. For example, rising temperatures in the Northwest may promote earlier and longer lasting blooms of A. catenella in the Puget Sound region, and these blooms are correlated with shellfish toxicity. Climate change and changing ocean properties could cause more frequent HABs over greater geographic areas, increasing the risk for human illness and death from exposure to HAB toxins.
For good summaries of climate change impacts on human health, click the buttons below   
Around the World: Climate change affects human communities. So does the mining of fossil fuels, which cause climate change. For information on those impacts, visit these sites:
Eight Ways That Climate Change Hurts Humans
From floods and droughts to increases in violent conflict, climate change is taking a toll on the planet's population
By Sarah Zielinski
SMITHSONIAN.COM
APRIL 10, 2014
Source: http://www.smithsonianmag.com/science-nature/eight-ways-climate-change-hurts-humans-180950475/?no-ist
As climate change makes wet places wetter and dry areas drier, the frequency of drought is expected in increase in certain locations. Droughts, such as this one in Kenya in 2006, can increase food insecurity, especially among the poor. (Brendan Cox/Oxfam/)
It can be easy to think of climate change as a far-off, indirect threat that some future human population will have to overcome. And that even then, the effects of climate change won’t be too bad, or that they won’t hurt people. But as the latest Intergovernmental Panel on Climate Change report, Climate Change 2014: Impacts, Adaptation and Vulnerability, emphasizes, the effects of climate change already can be seen, and members of the current human population already are its victims.
Climate change will hurt and even kill humans in a stunning variety of ways. Here are nine (sometimes unexpected) ways climate change will negatively affect people:
Heat waves: Extreme heat can be deadly, particularly among the poor who may not have the luxury of retreating to air-conditioned rooms. In Australia, for example, the number of dangerously hot days is expected to rise from its current average of four to six days per year to 33 to 45 by 2070. That will translate to more deaths: About 500 people died because of heat in Australian cities in 2011; the Australian government has projected 2,000 deaths per year by the middle of this century.
Floods: Climate change tends to make wet areas wetter and dry areas drier, and so there will be an increase in both flooding and droughts. Flooding is one of the most common natural disasters. Floods displace people from their homes, damage and destroy infrastructure and buildings, and take a toll on an economic level. In 2011 alone, 112 million people worldwide were affected by floods, and 3140 people were killed.
Drought: Unlike a flood, drought is rarely a direct killer. But extremely dry conditions that last for months or years can lead to food and water shortages and rising food prices, which can contribute to conflict. Droughts also have huge economic costs, even in developed countries. New Zealand, for instance, lost more than $3 billion from 2007-2009 because of reduced farm output from drought.
Fire: Increased heat increases fire risk, and climate change is expected to bring more wildfires. The current California drought, for instance, has raised the risk of “explosive” wildfires. And it’s not just burns and injuries from the fire that are the problems. “Smoke from forest fires has been linked…with increased mortality and morbidity,” the IPCC authors write in Chapter 11, “Human Health: Impacts, Adaptation, and Co-Benefits” [pdf].
Crop declines and food shortages: Extreme weather events, such as floods and droughts, will lead to declines in some crops in some areas. While this might be an inconvenience for people in developed countries when it comes to foods like limes and avocados, the situation will be far more dire when it comes to crops like corn and wheat and in countries that already struggle to feed their populations. Food shortages and increases in food prices, which increase the number of malnourished people, are a particular concern in those places that already suffering from food insecurity, such as large portions of Africa.
Infectious diseases: “Climate may act directly by influencing growth, survival, persistence, transmission or virulence of pathogens,” the IPCC scientists write in Chapter 11. Mosquitoes are sensitive to climate—as temperatures rise, they'll find favorable habitats in places that were once too cool for them to live, such as higher latitudes and altitudes. The diseases they transmit, such as malaria, dengue fever, and chikungunya fever, will spread with them.
Studies show that even a small amount of warming can increase malaria transmission under the right conditions. Dengue fever is another worry; it’s increased 30-fold in the last 50 years. And thanks to infected travelers' ability to move across the globe, chikungunya fever has already spread from Africa and Asia to the Caribbean, and may be poised to cross into the mainland Americas—a warming climate will exacerbate this new-found lack of isolation.
Food- and water-borne diseases, too, are a concern. For example, heavy rainfall, which will continue to increase as climate changes, can promote the transmission of water-borne diseases, such cholera and others caused by Vibrio bacteria, particularly in places where there aren’t good methods for disposing of human waste.
Mental illness: Climate change can increase stress, and that is a problem when it comes to mental health. “Harsher weather conditions such as floods, droughts, and heat waves tend to increase the stress on all those who are already mentally ill, and may create sufficient stress for some who are not yet ill to become so,” the IPCC researchers write in Chapter 11.
"When you have an environmental insult, the burden of mental health disease is far greater than the physical," Steven Shapiro, a Baltimore psychologist who directs the program on climate change, sustainability and psychology for the nonprofit Psychologists for Social Responsibility (PsySR), told LiveScience earlier this year. "Survivors can have all sorts of issues: post traumatic stress disorder, depression, anxiety, relationship issues, and academic issues among kids." Slow-developing events like droughts have even been linked to increases in suicide.
Violence and conflict: Human violence rarely has a single cause, but many of the effects of climate change have the potential to contribute to conflict—water and food shortages, soil degradation that makes land less suitable for agriculture, the movement of people as they migrate from lands made less habitable. “Climate change can indirectly increase risks of violent conflicts in the form of civil war and inter-group violence by amplifying well-documented drivers of these conflicts such as poverty and economic shocks,” researchers write in the report’s Summary for Policymakers [pdf].
These aren't doomsday scenarios; this isn't fearmongering—we're already seeing an uptick in every item on this list. So anyone hoping to avoid the effects of climate change may be out of luck.
Leading Health Experts Call For Fossil Fuel Divestment to Avert Climate Change
Source: http://time.com/3935564/health-experts-fossil-fuel-divestment/
Getty Images
'Divestment rests on the premise that it is wrong to profit from an industry whose core business threatens human and planetary health'
More than 50 of the world’s leading doctors and health researchers called on charities to divest from fossil fuel companies in an open letter Thursday. The letter, published in the Guardian, argues that climate change poses a dire risk to public health and that fossil fuel companies are unlikely to take action to reduce carbon emissions without prodding.
“Divestment rests on the premise that it is wrong to profit from an industry whose core business threatens human and planetary health,” the health experts wrote. The case for divestment brings “to mind one of the foundations of medical ethics—first, do no harm.”
The letter is the latest show of support for efforts to halt climate change from the medical community. Recent research has outlined a variety of public health issues caused by climate change, from heath stroke deaths to increased asthma rates. Just this week a study in The Lancet outlined how climate change could erode 50 years of health advances.
Read More: How College Kids Helped Divest $50 Billion From Fossil Fuels
The open letter alluded to those impacts and suggested that divestment would be the best way for global charities to address them. Engaging with fossil fuel companies’ boards has not been shown to work, the researcher wrote, likening the oil industry to the tobacco industry.
“Our primary concern is that a decision not to divest will continue to bolster the social licence of an industry that has indicated no intention of taking meaningful action,” researchers wrote.
The long list of signatories include the editors of The Lancet and BMJ, leading medical journals, as well as medical professors from across the United Kingdom.The letter specifically calls on the Wellcome Trust and the Gates Foundation, two nonprofits that are leading contributors to global health causes, to divestment their multi-billion endowments from fossil fuel companies. Together the companies control total endowments worth more than $70 billion.
Principle 8j
What Difference Does Half a Degree in Warming Make?
What's the difference between a two-degree world and a 1.5-degree world? The Paris climate conference in 2015 pledged not just to keep warming “well below 2 °C,” but also to "pursue efforts" to limit warming to 1.5 °C.
But how much of a difference can half a degree Celsius make? First, let's do the conversion to °F since that's the units used in the U.S.: 2 °C = 3.6°F and 1.5 °C = 2.7 °F.
So in degrees Fahrenheit, we're talking about a difference of less than 1°F (.9 °F to be exact). That doesn't sound like much of a difference. But adding half a degree of heat to the world's climate system turns out to make an enormous difference. Here's what the science says:
What Difference Does Half a Degree in Warming Make?
Hot Weather
A study last year by Erich Fischer of the Institute for Atmospheric and Climate Science in Zurich found that the risk of what was “once in a thousand days” hot weather has already increased fivefold. His modelling suggests that it will double again at 1.5 degrees and double once more as we go from 1.5 to 2 degrees. The probability of even more extreme events increases even faster.
At two degrees, parts of southwest Asia, including well-populated regions of the Persian Gulf and Yemen, may become literally uninhabitable without permanent air conditioning.
Droughts
The same will be true for droughts, says Carl-Friedrich Schleussner of the Potsdam Institute for Climate Impact Research in Germany. Last year, he reported that the extra half-degree would produce dramatic increases in the likely length of dry spells over wide areas of the globe, including the Mediterranean, Central America, the Amazon basin, and southern Africa, with resulting declines in river flows from a third to a half. Schleussner concluded that going from 1.5 to 2 degrees “marks the difference between events at the upper limit of present-day natural variability and a new climate regime, particularly in tropical regions.”
Famines
Some researchers predict a massive decline in the viability of food crops critical for human survival. The extra half-degree could cut corn yields in parts of Africa by half, says Bruce Campbell of the International Center for Tropical Agriculture. Schleussner found that even in the prairies of the U.S., the risk of poor corn yields would double.
Ecosystems
Ecosystems would feel the difference too. Take tropical coral reefs, which already regularly come under stress because of high ocean temperatures, suffering “bleaching” especially during El Nino events – as happened on the Great Barrier Reef in Australia this year. Most can now recover when the waters cool again, but today’s exceptional temperature may soon become the new normal. “Virtually all tropical coral reefs are projected to be at risk of severe degradation due to temperature-induced bleaching from 2050 onwards,” as warming slips past 1.5 degrees, reports Schleussner.
By some estimates, curbing warming at 1.5 degrees could be sufficient to prevent the formation of an ice-free Arctic in summer, to save the Amazon rainforest, and to prevent the Siberian tundra from melting and releasing planet-warming methane from its frozen depths. It could also save many coastal regions and islands from permanent inundation by rising sea levels, particularly in the longer run.
In 2100, the difference in sea level rise between 1.5 and 2 degrees would be relatively small: 40 centimeters versus 50 centimeters. But centuries later, as the impact of warmer air temperatures on the long-term stability of the great ice sheets of Greenland and Antarctica takes hold, it would be far greater. Michiel Schaeffer of Climate Analytics, a Berlin-based think tank, calculates that by 2300, two degrees would deliver sea level rise of 2.7 meters, while 1.5 degrees would limit the rise to 1.5 meters.
Source: http://e360.yale.edu/feature/what_would_a_global_warming_increase_15_degree_be_like/3007/
Principle 8k
A Summary of Impacts
Principle 8l
Local Relevance
Pacific Northwest’s ‘Wet Drought’ Possible Sign of Future
By Andrea Thompson
The desiccated soils and barren slopes of California have grabbed news headlines for months on end as the state is in its fourth year of a crippling drought that has forced unprecedented statewide water restrictions and billions of dollars in agricultural losses.
Unusually low snow levels seen at Oregon's Crater Lake on April 21, 2015. Credit: NPS
But while most eyes have been trained on the plight of the Golden State, its neighbors to the north are also facing a dearth of water, victims of some of the same atmospheric forces that have left California parched.
Oregon and Washington aren’t currently in the same dire straits as California, having at least received a fair bit of rain this winter, but the warm, snowless conditions could be a harbinger of the future in an overall warming world. Some experts and officials are hoping the region can learn from today’s situation to better prepare for an altered climate later in the century.
“We have an opportunity here to start thinking about our future,” Kathie Dello, deputy director of the Oregon Climate Service at Oregon State University, said.
Wet Drought
The drought in California is one of both heat and dryness, as a persistent ridge of high pressure that parked itself over the western U.S. over the past two winters blocked much-needed storms and drove up temperatures to spring and summer levels.
Oregon and Washington, on the other hand, are stuck in a seemingly oxymoronic wet drought. The storms that were prevented from hitting California did provide rains to the Pacific Northwest, with winter precipitation in Oregon only about 30 percent below average, not even in the bottom 10 years historically, said Philip Mote, director of the Oregon Climate Service.
But the sky-high temperatures that marked the warmest winter on record for Washington and the second warmest for Oregon meant that much of the precipitation fell as rain, and not snow. Like California, parts of both these states depend on melting snowfall to fill their reservoirs, leaving them with potential shortages this year. Elevated temperatures also meant that what snow there was melted much earlier than normal.
Three-fourths of snow survey sites in Oregon had record-low snow measurements as of April 1, and fewer than half of them had any snow on the ground, according to a report by the Natural Resources Conservation Service. The snowpack across much of the Cascades Range in Washington was less than 25 percent, while the Olympic Mountains checked in at only 3 percent on April 1, an “unbelievably low” amount, Karin Bumbaco, assistant state climatologist in Washington, said.
Water and Wildfires
Those numbers, along with expectations that the drought conditions will persist if not intensify, have officials bracing for impacts this spring and summer.
“The two themes that keep coming up are summertime water supply and wildfires,” Dello said.
The water shortage concerns aren’t as widespread as in California because the western parts of Oregon and Washington tend to depend solely on rain, and so their supplies are fairly healthy. But in eastern areas that do depend on the snowpack to keep reservoirs topped up, residents and officials “are really concerned about what’s going to happen,” Dello said.
Streamflow levels compared to normal across the Pacific Northwest in late April 2015. Credit: USGS
In eastern Oregon, there is concern that a lack of water to irrigate pastures for cattle grazing could further drive up the price of beef, and many farmers are already planning to let fields lie fallow, The Oregonian reported. In Washington, junior water users will get only 60 percent of their water allocations, Bumbaco said. The numbers could be worse, she added, but reservoir managers stored more rain than they typically would, anticipating the poor snow runoff.
The poor spring and summer runoff could also impact local wildlife. The Department of Fish and Wildlife is concerned about the ability of fish, like salmon, to be able to make it down streams to the ocean and is requesting money from the state to truck them to the sea, Bumbaco said.
Come June and July, the National Interagency Fire Center expects “increasing to above normal” potential for wildfires in a broad swath of the drought-stricken West, including all of Oregon and most of Washington, which could put homes, businesses and ecosystems at risk.
Warm Western Future
While the scarcity of snow poses immediate challenges for Pacific Northwest communities, it also presents an opportunity to better prepare the region for a warmer world.
The Pacific Northwest has already warmed by 1.3°F since 1895, and is expected to have warmed by 3° to 10°F by the end of the century (compared to the 1970-1999 average), according to the National Climate Assessment. And while heavy downpours there are expected to rise because of the greater water-holding capacity of the warmer atmosphere, less of that precipitation will fall as snow at all but the highest elevations. The warmer temperatures also mean a likely earlier spring snowmelt, changing the equations for calculating water supplies during the dry season.
Given those expectations, this winter stands as an example of what the average winter in Oregon or Washington could be like by the end of the century.
The National Interagency Fire Center's outlook for wildfire conditions across the country during June and July 2015. Conditions from California through Washington are elevated during that time period due to the drought in the region.
Credit: NIFC
“There’s been a lot of talk about that in the community,” Bumbaco said. “I don’t’ want to say to anyone that this is climate change right now,” she cautioned, but said that it’s a fair statement that it could be a glimpse of the future.
Just as the drought is forcing some hard reckoning in California in terms of thinking about how water is stored, transported and used — including for watering lush suburban lawns and water-thirsty crops in an arid landscape — it could spur changes to be made in the Pacific Northwest.
Previous droughts contributed to changes in Seattle’s water system, as well as land-use rules that have contained urban development and prevented the kind of sprawl that has strained water resources in California, Dello said.
Exactly what form new changes might take is still very much up in the air, but officials have already floated ideas to increase water storage, use recycled water for activities like watering lawns and flushing toilets, modernizing irrigation and encouraging efficient water fixtures in houses to reduce water use, and perhaps even making changes to the century-old system of parceling out water rights in the West.
“I don’t see that changing easily; it’s such an institution,” Dello said. But, she added, “people are certainly studying this.”
Click the button below to learn what the National Climate Assessment says about the Pacific Northwest  
Principle 8m
Misconceptions about this Principle
The Misconception
Global warming will be good for humans
The misconception or myth goes something like this: “…Two thousand years of published human histories say that warm periods were good for people. It was the harsh, unstable Dark Ages and Little Ice Age that brought bigger storms, untimely frost, widespread famine and plagues of disease.”
The Science
Scientist predict climate change will bring many more costs than benefits.
The science says: climate change will have many more costs than benefits. While it is expected that global warming may bring a few benefits in the short term, it is expected that over the longer term, it will bring few or no benefits to human society and instead will do great harm at considerable cost. Learn more…
Source: https://www.skepticalscience.com/global-warming-positives-negatives.htm
The Science
Scientist predict climate change will bring many more costs than benefits.
The science says: climate change will have many more costs than benefits. While it is expected that global warming may bring a few benefits in the short term, it is expected that over the longer term, it will bring few or no benefits to human society and instead will do great harm at considerable cost.
Source: https://www.skepticalscience.com/global-warming-positives-negatives.htm
- AgricultureWhile CO2 is essential for plant growth, all agriculture depends also on steady water supplies, and climate change is likely to disrupt those supplies through floods and droughts. It has been suggested that higher latitudes – Siberia, for example – may become productive due to global warming, but the soil in Arctic and bordering territories is very poor, and the amount of sunlight reaching the ground in summer will not change because it is governed by the tilt of the earth. Agriculture can also be disrupted by wildfires and changes in seasonal periodicity, which is already taking place, and changes to grasslands and water supplies will impact grazing and welfare of domestic livestock. Increased warming may also have a greater effect on countries whose climate is already near or at a temperature limit over which yields reduce or crops fail – in the tropics or sub-Sahara, for example.
Source: https://www.skepticalscience.com/global-warming-positives-negatives.htm - HealthWarmer winters would mean fewer deaths, particularly among vulnerable groups like the aged. However, the same groups are also vulnerable to additional heat, and deaths attributable to heat waves are expected to be approximately five times as great as winter deaths prevented. It is widely believed that warmer climes will encourage migration of disease-bearing insects like mosquitoes. Malaria (transmitted by mosquitoes) is already appearing in places it hasn’t been seen before.
Source: https://www.skepticalscience.com/global-warming-positives-negatives.htm - Polar MeltingWhile the opening of a year-round ice-free Arctic passage between the Atlantic and Pacific oceans would confer some commercial benefits, these are considerably outweighed by the negatives. Detrimental effects include loss of polar bear habitat and increased mobile ice hazards to shipping. The loss of ice albedo (the reflection of heat), causing the ocean to absorb more heat, is also a feedback loop that furthers warming—with enormous and potentially catastrophic consequences; the warming waters increase glacier and Greenland ice cap melt and raise the temperature of Arctic tundra. Warmer tundra then releases methane, a very potent greenhouse gas (methane is also released from the sea-bed, where it is trapped in ice-crystals called clathrates). Melting of the Antarctic ice shelves is predicted to add further to sea-level rise with no benefits accruing.
Source: https://www.skepticalscience.com/global-warming-positives-negatives.htm - Ocean AcidificationA cause for considerable concern, there appear to be no benefits to the change in pH of the oceans. This process is caused by additional CO2 being absorbed in the water, and may have severe destabilizing effects on the entire oceanic food-chain.
Source: https://www.skepticalscience.com/global-warming-positives-negatives.htm - Melting GlaciersThe effects of glaciers melting are largely detrimental, the principle impact being that one-sixth of the world’s population depends on fresh water supplied each year by natural spring melt and regrowth cycles. Melting glaciers mean those water supplies, used as drinking water and for agriculture, may fail.
Source: https://www.skepticalscience.com/global-warming-positives-negatives.htm - Sea-level RiseMany parts of the world are low-lying and will be severely affected by modest sea rises. Rice paddies are being inundated with salt water, which destroys the crops. Seawater is contaminating rivers as it mixes with fresh water further upstream, and aquifers used for drinking water and agriculture are becoming polluted. Given that the IPCC did not include melt-water from the Greenland and Antarctic ice-caps due to uncertainties at that time, estimates of sea-level rise are feared to considerably underestimate the scale of the problem. There are no proposed benefits to sea-level rise.
Source: https://www.skepticalscience.com/global-warming-positives-negatives.htm - EnvironmentalPositive effects of climate change may include greener rain forests and enhanced plant growth in the Amazon, increased vegetation in northern latitudes and possible increases in plankton biomass in some parts of the ocean. Negative responses may include further growth of oxygen-poor ocean zones, contamination or exhaustion of fresh water, increased incidence of natural fires, extensive vegetation die-off due to droughts, increased risk of coral extinction, decline in global phytoplankton, changes in migration patterns of birds and animals, changes in seasonal periodicity, disruption to food chains and species loss.
Source: https://www.skepticalscience.com/global-warming-positives-negatives.htm - EconomicThe economic impacts of climate change may be catastrophic, while there have been very few benefits projected at all. The Stern report made clear the overall pattern of economic distress, and while the specific numbers may be contested, the costs of climate change were far in excess of the costs of preventing it. Certain scenarios projected in the IPCC AR4 report would witness massive migration as low-lying countries were flooded. Disruptions to global trade, transport, energy supplies and labour markets, banking and finance, investment and insurance, would all wreak havoc on the stability of both developed and developing nations. Markets would endure increased volatility and institutional investors such as pension funds and insurance companies would experience considerable difficulty.
Developing countries, some of which are already embroiled in military conflict, may be drawn into larger and more protracted disputes over water, energy supplies or food, all of which may disrupt economic growth at a time when developing countries are beset by more egregious manifestations of climate change. It is widely accepted that the detrimental effects of climate change will be visited largely on the countries least equipped to adapt, socially or economically.
Source: https://www.skepticalscience.com/global-warming-positives-negatives.htm - Show More
Check your Knowledge of this Principle
To pass this knowledge check you will need to have read the main paragraphs for each topic of the principle.